The main contribution of this paper lies in the documentation of hands-on experiences in designing, implementing and operating AAL systems through utilizing inexpensive equipment (effectively, microcontroller-based systems expanded by sensory and wireless communication off-the-shelf components). To meet this objective, we discuss technical trade-offs and design decisions, while reporting implementation details relevant to our deployment framework. To our knowledge, the particular structural, architectural and implementation setting adopted in UbiCare has not been reported in the literature. We argue that our experiences may serve as a useful guide for the development of research and commercial AAL or similar tools. It is noted that, besides supporting activity monitoring services, the main design goals of UbiCare also include: low deployment and operational cost; efficient energy management so as to prolong the lifetime of battery-operated nodes; privacy protection through enabling confidentiality across wireless data communications.
The remainder of this article is structured as follows: Section 2 reviews related work. Section 3 presents our experimental testbed and Section 4 discusses functional and technical considerations with respect to our implemented prototype. Lessons learnt from a real-life experiment are documented in Section 5. Finally, Section 6 concludes our work and suggests directions for future work.