Identifying and Mitigating Harmonics in AC Drive Applications
Common to any production operation is movement, usually driven by electric motors. Better control of this movement contributes to improved operational performance. Beyond performance, however, there's also the need to protect these motors to maximize return on investment.
For reliable control and improved protection, adjustable-speed drives are a common companion to motors. Although these drives offer inherent production benefits, they may also contribute to power quality issues, such as line current harmonics. As a result, you should take a closer look at harmonics when evaluating mitigation strategies.
Catch the wave. Compared to DC motor drives, AC motor drives cause very few problems. However, poorly designed applications can result in power line voltage distortions, as shown in the flat-topped waves of Fig. 1.
These voltage distortions can cause problems for other equipment connected to the same power lines, resulting in erratic operation of controls, dimming of lights, and overheating motors operating across the line. The distribution transformers and cables feeding these drives will also experience additional heating, which reduces the power use of those components.
Unlike the way in which a linear load draws current, such as an AC motor operating across the power line (Fig. 2), a typical AC drive draws current from a distribution transformer that's far from a sinusoidal waveform (Fig. 3). This occurs because the drive is taking current from the transformer only during certain times of the cycle to convert the 3-phase AC line voltage to a fixed DC voltage within the drive. The drive then pulse-width modulates this fixed DC voltage into variable frequency/variable voltage for the motor.
The AC-to-DC conversion is what causes the harmonics. Current flows only during part of the cycle, creating the odd-looking current waveform shown in Fig. 3. It's this distorted current that creates the voltage distortion. This is why a drive is considered a nonlinear load.