Quantum electrodynamics (QED)Quantum electrodynamics (QED) is a scient การแปล - Quantum electrodynamics (QED)Quantum electrodynamics (QED) is a scient ไทย วิธีการพูด

Quantum electrodynamics (QED)Quantu

Quantum electrodynamics (QED)

Quantum electrodynamics (QED) is a scientific theory that is also known as the quantum theory of light. QED describes the quantum properties (properties that are conserved and that occur in discrete amounts called quanta) and mechanics associated with the interaction of light (i.e., electromagnetic radiation) with matter. The practical value of QED rests upon its ability, as a set of equations, to allow calculations related to the absorption and emission of light by atoms and to allow scientists to make very accurate predictions regarding the result of the interactions between photons and charged atomic particles such as electrons. QED is a fundamentally important scientific theory because it accounts for all observed physical phenomena except those associated with aspects of relativity theory and radioactive decay.

QED is a complex and highly mathematical theory that paints a picture of light that is counter-intuitive to everyday human experience. According to QED theory, light exists in a duality consisting of both particle and wave-like properties. More specifically, QED asserts that electromagnetism results from the quantum behavior of the photon, the fundamental "particle" responsible for the transmission electromagnetic radiation. According to QED theory, a seeming particle vacuum actually consists of electron-positron fields. An electron-positron pair (positrons are the positively charged antiparticle to electrons) comes into existence when photons interact with these fields. In turn, QED also accounts for the subsequent interactions of these electrons, positrons, and photons.

Photons, unlike other "solid" particles, are thought to be "virtual particles" constantly exchanged between charged particles such as electrons. Indeed, according to QED theory the forces of electricity and magnetism (i.e., the fundamental electromagnetic force) stem from the common exchange of virtual photons between particles and only under special circumstances do photons become observable as light.

According to QED theory, "virtual photons" are more like the wavelike disturbances on the surface of water after it is touched. The virtual photons are passed back and forth between the charged particles much like basketball players might pass a ball between them as they run down the court. As virtual particles, photons cannot be observed because they would violate the laws regarding the conservation of energy and momentum. Only in their veiled or hidden state do photons act as mediators of force between particles. The "force" caused by the exchange of virtual photons causes charged particles to change their velocity (speed and/or direction of travel) as they absorb or emit virtual photons.

Only under limited conditions do the photons escape the charged particles and thereby become observable as electro-magnetic radiation. Observable photons are created by perturbations (i.e., wave-like disruptions) of electrons and other charged particles. According to QED theory, the process also works in reverse as photons can create a particle and its antiparticle (e.g., an electron and its oppositely charged antiparticle, a positron).

In QED dynamics, the simplest interactions involve only two charged particles. The application of QED is, however, not limited to these simple systems; interactions involving an infinite number of photons are described by increasingly complex processes termed second-order (or higher) processes. Although QED can account for an infinite number of processes (i.e., an infinite number of interactions) the theory also dictates that more interactions also become increasingly rare as they become increasingly complex.

The genesis of QED was the need for physicists to reconcile theories initially advanced by British physicist James Clerk Maxwell regarding electromagnetism in the later half of the nineteenth century (i.e., that electricity and magnetism are two aspects of a single force) with quantum theory developed during the early decades of the twentieth century. Prior to WWII, British physicist Paul Dirac, German physicist Werner Heisenberg, and Austrian-born American physicist Wolfgang Pauli all made significant contributions to the mathematical foundations related to QED. Even for these experienced physicists, however, working with QED posed formidable obstacles because of the presence of "infinities" (infinite values) in the mathematical calculations (e.g., for emission rates or determinations of mass). It was often difficult to make predictions match observed phenomena and early attempts at using QED theory often gave physicists wrong or incomprehensible answers.

The calculations used to define QED were made more accessible and reliable by a process termed renormalization, independently developed by American physicist Richard Feynman (1918–1988), American physicist Julian Schwinger (1918–1994), and Japanese physicist Shin'ichiro Tomonaga (1906–1979). In essence the work of th
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
Quantum electrodynamics (QED)Quantum electrodynamics (QED) is a scientific theory that is also known as the quantum theory of light. QED describes the quantum properties (properties that are conserved and that occur in discrete amounts called quanta) and mechanics associated with the interaction of light (i.e., electromagnetic radiation) with matter. The practical value of QED rests upon its ability, as a set of equations, to allow calculations related to the absorption and emission of light by atoms and to allow scientists to make very accurate predictions regarding the result of the interactions between photons and charged atomic particles such as electrons. QED is a fundamentally important scientific theory because it accounts for all observed physical phenomena except those associated with aspects of relativity theory and radioactive decay.QED is a complex and highly mathematical theory that paints a picture of light that is counter-intuitive to everyday human experience. According to QED theory, light exists in a duality consisting of both particle and wave-like properties. More specifically, QED asserts that electromagnetism results from the quantum behavior of the photon, the fundamental "particle" responsible for the transmission electromagnetic radiation. According to QED theory, a seeming particle vacuum actually consists of electron-positron fields. An electron-positron pair (positrons are the positively charged antiparticle to electrons) comes into existence when photons interact with these fields. In turn, QED also accounts for the subsequent interactions of these electrons, positrons, and photons.
Photons, unlike other "solid" particles, are thought to be "virtual particles" constantly exchanged between charged particles such as electrons. Indeed, according to QED theory the forces of electricity and magnetism (i.e., the fundamental electromagnetic force) stem from the common exchange of virtual photons between particles and only under special circumstances do photons become observable as light.

According to QED theory, "virtual photons" are more like the wavelike disturbances on the surface of water after it is touched. The virtual photons are passed back and forth between the charged particles much like basketball players might pass a ball between them as they run down the court. As virtual particles, photons cannot be observed because they would violate the laws regarding the conservation of energy and momentum. Only in their veiled or hidden state do photons act as mediators of force between particles. The "force" caused by the exchange of virtual photons causes charged particles to change their velocity (speed and/or direction of travel) as they absorb or emit virtual photons.

Only under limited conditions do the photons escape the charged particles and thereby become observable as electro-magnetic radiation. Observable photons are created by perturbations (i.e., wave-like disruptions) of electrons and other charged particles. According to QED theory, the process also works in reverse as photons can create a particle and its antiparticle (e.g., an electron and its oppositely charged antiparticle, a positron).

In QED dynamics, the simplest interactions involve only two charged particles. The application of QED is, however, not limited to these simple systems; interactions involving an infinite number of photons are described by increasingly complex processes termed second-order (or higher) processes. Although QED can account for an infinite number of processes (i.e., an infinite number of interactions) the theory also dictates that more interactions also become increasingly rare as they become increasingly complex.

The genesis of QED was the need for physicists to reconcile theories initially advanced by British physicist James Clerk Maxwell regarding electromagnetism in the later half of the nineteenth century (i.e., that electricity and magnetism are two aspects of a single force) with quantum theory developed during the early decades of the twentieth century. Prior to WWII, British physicist Paul Dirac, German physicist Werner Heisenberg, and Austrian-born American physicist Wolfgang Pauli all made significant contributions to the mathematical foundations related to QED. Even for these experienced physicists, however, working with QED posed formidable obstacles because of the presence of "infinities" (infinite values) in the mathematical calculations (e.g., for emission rates or determinations of mass). It was often difficult to make predictions match observed phenomena and early attempts at using QED theory often gave physicists wrong or incomprehensible answers.

The calculations used to define QED were made more accessible and reliable by a process termed renormalization, independently developed by American physicist Richard Feynman (1918–1988), American physicist Julian Schwinger (1918–1994), and Japanese physicist Shin'ichiro Tomonaga (1906–1979). In essence the work of th
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
ควอนตัมไฟฟ้ากระแส (QED) ควอนตัมไฟฟ้ากระแส (QED) เป็นทฤษฎีทางวิทยาศาสตร์ที่เป็นที่รู้จักกันเป็นทฤษฎีควอนตัของแสง QED อธิบายคุณสมบัติของควอนตัม (คุณสมบัติที่ได้รับการอนุรักษ์และที่เกิดขึ้นในปริมาณที่ไม่ต่อเนื่องที่เรียกว่าควอนตั้ม) และกลไกที่เกี่ยวข้องกับการทำงานร่วมกันของแสง (เช่นรังสีแม่เหล็กไฟฟ้า) กับเรื่อง มูลค่าการปฏิบัติของ QED อยู่กับความสามารถของมันเป็นชุดของสมการเพื่อให้การคำนวณที่เกี่ยวข้องกับการดูดซึมและการปล่อยก๊าซเรือนกระจกของแสงโดยอะตอมและเปิดโอกาสให้นักวิทยาศาสตร์ที่จะทำให้การคาดการณ์ที่ถูกต้องมากเกี่ยวกับผลที่ตามมาของการมีปฏิสัมพันธ์ระหว่างโฟตอนและอนุภาคอะตอม เช่นอิเล็กตรอน QED เป็นทฤษฎีทางวิทยาศาสตร์ที่สำคัญพื้นฐานเพราะมันบัญชีสำหรับทุกสังเกตปรากฏการณ์ทางกายภาพยกเว้นผู้ที่เกี่ยวข้องกับแง่มุมของทฤษฎีสัมพัทธภาพและการเสื่อมสลายของสารกัมมันตรังสี. QED เป็นทฤษฎีที่ซับซ้อนและคณิตศาสตร์อย่างที่วาดภาพของแสงที่เคาน์เตอร์ในชีวิตประจำวันประสบการณ์ของมนุษย์ . ตามทฤษฎี QED แสงที่มีอยู่ในคู่ที่ประกอบด้วยทั้งอนุภาคและคุณสมบัติเหมือนคลื่น โดยเฉพาะอย่างยิ่ง QED อ้างว่าผลแม่เหล็กไฟฟ้าจากพฤติกรรมของควอนตัมของโฟตอน, พื้นฐาน "อนุภาค" ความรับผิดชอบสำหรับการส่งคลื่นแม่เหล็กไฟฟ้า ตามทฤษฎี QED, เครื่องดูดฝุ่นอนุภาคดูเหมือนจริงประกอบด้วยสาขาอิเล็กตรอนโพซิตรอน คู่อิเล็กตรอนโพซิตรอน (โพสิตรอนเป็นปฏิปักษ์ประจุบวกจะอิเล็กตรอน) เข้ามาในการดำรงอยู่เมื่อโฟตอนโต้ตอบกับข้อมูลเหล่านี้ ในทางกลับกัน QED ยังบัญชีสำหรับการปฏิสัมพันธ์ที่ตามมาของอิเล็กตรอนเหล่านี้โพสิตรอนและโฟตอน. โฟตอนซึ่งแตกต่างจากคนอื่น ๆ อนุภาค "ตัน" มีความคิดที่จะเป็น "อนุภาคเสมือน" การแลกเปลี่ยนอย่างต่อเนื่องระหว่างอนุภาคที่มีประจุเช่นอิเล็กตรอน อันที่จริงตามทฤษฎี QED กองกำลังของการไฟฟ้าและแม่เหล็ก (เช่นแรงแม่เหล็กไฟฟ้าพื้นฐาน) เกิดจากการแลกเปลี่ยนร่วมกันของโฟตอนเสมือนระหว่างอนุภาคและเฉพาะภายใต้สถานการณ์พิเศษไม่โฟตอนเป็นที่สังเกตได้เป็นไฟ. ตามทฤษฎี QED "โฟตอนเสมือน "จะมากขึ้นเช่นการรบกวน wavelike บนพื้นผิวของน้ำหลังจากที่มีการสัมผัส โฟตอนเสมือนจะถูกส่งผ่านไปมาระหว่างอนุภาคที่มีประจุเหมือนผู้เล่นบาสเกตบอลอาจจะผ่านบอลระหว่างพวกเขาขณะที่พวกเขาวิ่งลงสนาม ในฐานะที่เป็นอนุภาคเสมือนโฟตอนไม่สามารถสังเกตเห็นเพราะพวกเขาจะละเมิดกฎหมายเกี่ยวกับการอนุรักษ์พลังงานและโมเมนตัม เฉพาะในรัฐหรือหน้ากากที่ซ่อนของพวกเขาทำหน้าที่เป็นโฟตอนไกล่เกลี่ยของแรงระหว่างอนุภาค "การบังคับ" ที่เกิดจากการแลกเปลี่ยนสาเหตุโฟตอนเสมือนอนุภาคมีประจุที่จะเปลี่ยนความเร็วของพวกเขา (ความเร็วและ / หรือทิศทางของการเดินทาง) ที่พวกเขาดูดซับหรือปล่อยโฟตอนเสมือน. เฉพาะภายใต้เงื่อนไขที่ จำกัด ทำโฟตอนหนีอนุภาคที่มีประจุและจึงกลายเป็นที่สังเกตได้ เป็นรังสีแม่เหล็กไฟฟ้า โฟตอนที่สังเกตได้ถูกสร้างขึ้นโดยเยี่ยงอย่าง (เช่นการหยุดชะงักเหมือนคลื่น) ของอิเล็กตรอนและอนุภาคที่มีประจุอื่น ๆ ตามทฤษฎี QED กระบวนการที่ยังทำงานในสิ่งที่ตรงกันข้ามเป็นโฟตอนสามารถสร้างอนุภาคและปฏิปักษ์ของ (เช่นอิเล็กตรอนและปฏิปักษ์ของค่าใช้จ่ายตรงข้ามเป็นโพซิตรอน.) ในการเปลี่ยนแปลง QED ที่เกี่ยวข้องกับการมีปฏิสัมพันธ์ที่ง่ายเพียงสองอนุภาคที่มีประจุ การประยุกต์ใช้ QED เป็น แต่ไม่ จำกัด เฉพาะกับระบบที่เรียบง่ายเหล่านี้ ปฏิสัมพันธ์ที่เกี่ยวข้องกับจำนวนอนันต์ของโฟตอนจะมีการอธิบายโดยกระบวนการที่ซับซ้อนมากขึ้นเรียกว่าสองคำสั่ง (หรือสูงกว่า) กระบวนการ แม้ว่า QED สามารถบัญชีสำหรับจำนวนอนันต์ของกระบวนการ (เช่นจำนวนอนันต์ของการมีปฏิสัมพันธ์) ทฤษฎีนี้ยังสั่งการให้มีปฏิสัมพันธ์มากขึ้นก็จะกลายเป็นของหายากมากขึ้นที่พวกเขากลายเป็นความซับซ้อนมากขึ้น. กำเนิดของ QED เป็นความจำเป็นสำหรับนักฟิสิกส์ที่จะคืนดีทฤษฎีขั้นต้นขั้นสูง โดยนักฟิสิกส์ชาวอังกฤษเจมส์เคลิแมกซ์เวลเกี่ยวกับแม่เหล็กไฟฟ้าในช่วงครึ่งหลังของศตวรรษที่สิบเก้า (เช่นที่ไฟฟ้าและแม่เหล็กสองด้านของแรงเดี่ยว) กับทฤษฎีควอนตัพัฒนาขึ้นในช่วงทศวรรษที่ผ่านมาในช่วงต้นของศตวรรษที่ยี่สิบ ก่อนที่จะมีสงครามโลกครั้งที่สองนักฟิสิกส์ชาวอังกฤษพอลแรค, ฟิสิกส์ชาวเยอรมันเวอร์เนอร์ไฮเซนเบิร์กและออสเตรียเกิดฟิสิกส์ชาวอเมริกันโวล์ฟกัง Pauli ทั้งหมดที่ทำส่วนสำคัญในการวางรากฐานทางคณิตศาสตร์ที่เกี่ยวข้องกับ QED แม้สำหรับนักฟิสิกส์ที่มีประสบการณ์เหล่านี้ แต่การทำงานกับ QED เกิดอุปสรรคที่น่ากลัวเพราะการปรากฏตัวของ "อนันต์" (ค่าอนันต์) ในการคำนวณทางคณิตศาสตร์ (เช่นอัตราการปล่อยก๊าซเรือนกระจกหรือหาความมวล) มันเป็นเรื่องยากมักจะทำให้การคาดการณ์ตรงกับปรากฏการณ์ที่สังเกตและพยายามต้นที่ใช้ทฤษฎี QED มักจะให้นักฟิสิกส์ที่ไม่ถูกต้องหรือคำตอบที่ไม่สามารถเข้าใจ. การคำนวณที่ใช้ในการกำหนด QED ได้ทำเข้าถึงได้มากขึ้นและเชื่อถือได้โดยกระบวนการที่เรียกว่า renormalization, การพัฒนาขึ้นโดยนักฟิสิกส์ชาวอเมริกันริชาร์ดไฟน์แมน (1918-1988) นักฟิสิกส์ชาวอเมริกันจูเลียน Schwinger (1918-1994) และนักฟิสิกส์ญี่ปุ่น Shin'ichiro Tomonaga (1906-1979) ในสาระสำคัญการทำงานของน้ำงา















การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2025 I Love Translation. All reserved.

E-mail: