The homeostasis of L-carnitine (Fig. 2) is maintained through biosynthesis, efficient reabsorption in the kidneys and food intake, particularly from meat and dairy products. The physiological range of different L-carnitine concentrations in various tissues is maintained by complex transporter system. The biosynthesis of L-carnitine from the amino acids lysine and methionine proceeds in the liver, kidney and testis, with ┛-butyrobetaine (GBB) being an intermediate precursor . It has been estimated that in the case of a non-vegetarian diet, only about 25% of the necessary L- carnitine is biosynthesised, and 75% is ingested from food . Interestingly, the blood plasma concentration in women is about 20% lower than in men . Additionally, in vegetarians, the L-carnitine concentration in the blood serum is 20- 30% lower than that in the reference population.
After oral intake, the absorption of L-carnitine proceeds by active transport and passive diffusion. It has been shown experimentally that the absolute bioavailability of L-carnitine after a peroral dose of 1-6 g was only 5-18%, while the intake of L-carnitine by food resulted in an absorption of up to 75% . When the peroral dose was higher than 6 g, a specific smell was noted, possibly due to an increased concentration of trimethylamine in sweat . Interestingly, the L-carnitine concentration that is required to support long-chain FA oxidation spans a wide range among different tissues of the same species and in the same tissue across species because different tissues express different isoforms of CPT I, which are, in turn, differentially sensitive to L-carnitine. For example, the rat isoforms of CPT I in the liver (CPT IA) and muscle (CPT IB) have Km values for L-carnitine of 30 and 500 μM, respectively. In the heart, both CPT I isoforms, CPT IA and CPT IB, are present, and as a result, the average Km for L- carnitine in the heart is 200 μM. Therefore, the liver is much less sensitive to lower L-carnitine concentrations than the muscles and the heart. Additionally, in cases of a reduced L-carnitine concentration, a compensatory increase in CPT I is observed. In a recent publication, it was demonstrated that systemic L-carnitine deficiency causes severe hypoglycaemia in mice. Similarly, after treatment with sodium pivalate, glucose oxidation was increased in L-carnitine-deficient hearts. Thus, the bioavailability of L-carnitine changes along with the amounts of its dietary intake, and its requirements could be different in different tissues, reflecting the energy needs under certain conditions.
ภาวะธำรงดุลของ L-คาร์นิที (Fig. 2) ตั้งไว้ผ่านทางการสังเคราะห์ reabsorption ประสิทธิภาพในไตและรับประทานอาหาร โดยเฉพาะอย่างยิ่งจากผลิตภัณฑ์เนื้อและนม ช่วงสรีรวิทยาของ L-คาร์นิทีความเข้มข้นแตกต่างกันในเนื้อเยื่อต่าง ๆ ไว้ ด้วยระบบขนส่งที่ซับซ้อน ดำเนินการสังเคราะห์ของ L-คาร์นิทีจากกรดอะมิโนไลซีนและ methionine ในตับ ไต และ testis กับ┛-butyrobetaine (GBB) เป็นสารตั้งต้นเป็นระดับกลาง มันมีการประมาณว่า ในกรณีของอาหารที่ไม่ใช่เจ เพียง 25% ของจำเป็น L-คาร์นิที biosynthesised และ 75% จะกินจากอาหาร เป็นเรื่องน่าสนใจ ความเข้มข้นเลือดในผู้หญิงได้ประมาณ 20% ที่ต่ำกว่าในผู้ชาย นอกจากนี้ มังสวิรัติ L-คาร์นิทีความเข้มข้นในซีรั่มของเลือดเป็น 20-30% ที่ต่ำกว่าประชากรอ้างอิง After oral intake, the absorption of L-carnitine proceeds by active transport and passive diffusion. It has been shown experimentally that the absolute bioavailability of L-carnitine after a peroral dose of 1-6 g was only 5-18%, while the intake of L-carnitine by food resulted in an absorption of up to 75% . When the peroral dose was higher than 6 g, a specific smell was noted, possibly due to an increased concentration of trimethylamine in sweat . Interestingly, the L-carnitine concentration that is required to support long-chain FA oxidation spans a wide range among different tissues of the same species and in the same tissue across species because different tissues express different isoforms of CPT I, which are, in turn, differentially sensitive to L-carnitine. For example, the rat isoforms of CPT I in the liver (CPT IA) and muscle (CPT IB) have Km values for L-carnitine of 30 and 500 μM, respectively. In the heart, both CPT I isoforms, CPT IA and CPT IB, are present, and as a result, the average Km for L- carnitine in the heart is 200 μM. Therefore, the liver is much less sensitive to lower L-carnitine concentrations than the muscles and the heart. Additionally, in cases of a reduced L-carnitine concentration, a compensatory increase in CPT I is observed. In a recent publication, it was demonstrated that systemic L-carnitine deficiency causes severe hypoglycaemia in mice. Similarly, after treatment with sodium pivalate, glucose oxidation was increased in L-carnitine-deficient hearts. Thus, the bioavailability of L-carnitine changes along with the amounts of its dietary intake, and its requirements could be different in different tissues, reflecting the energy needs under certain conditions.
การแปล กรุณารอสักครู่..
