The presence of a solute lowers the freezing point of a solution relative to that of the pure solvent. For example, pure water freezes at 0°C (32°F); if one dissolves 10 grams (0.35 ounces) of sodium chloride (table salt) in 100 grams (3.53 ounces) of water, the freezing point goes down to −5.9°C (21.4°F). If one uses sucrose (table sugar) instead of sodium chloride, 10 grams (0.35 ounces) in 100 grams (3.53 ounces) of water gives a solution with a freezing point of −0.56°C (31°F). The reason that the salt solution has a lower freezing point than the sugar solution is that there are more particles in 10 grams (0.35 ounces) of sodium chloride than in 10 grams (0.35 ounces) of sucrose. Since sucrose, C 12 H 22 O 11 has a molecular weight of 342.3 grams (12.1 ounces) per mole and sodium chloride has a molecular weight of 58.44 grams (2.06 ounces) per mole, 1 gram (0.035 ounces) of sodium chloride has almost six times as many sodium chloride units as there are sucrose units in a gram of sucrose. In addition, each sodium chloride unit comes apart into two ions (a sodium cation and a chloride anion ) when