Thermal test chips are widely used to develop electronic packaging thermal solutions and to evaluate electronic package assembly processes. Temperature sensors are an integral component on thermal test chips. Unfortunately, each temperature sensor must be calibrated in order for them to be effective. Each calibration can take up to one hour to complete. In a time when increasing sample sizes and shorter development cycles are taxing current equipment and manpower resources, new calibration techniques must be established to keep development costs down. This paper discusses simplified calibration procedures, which can significantly reduce the time needed for temperature sensor calibration. The simplified calibration procedures utilize single-resistance measurements either at room temperature or at the anticipated test temperature. For four different test chip designs included in this study, calibration error variations of less than ±0.6°C at a ±2σ confidence level are possible. The simplified calibration procedures can be applied to any resistor type temperature sensor which has a linear correlation between its electric resistive properties and temperature