We see that the equation of motion is unchanged if ¨R = 0: this is because the supportwould
be moving with constant velocity, and thus it is just like setting up the system in
another inertial frame. We also notice that a vertical acceleration of the support point is
like increasing or decreasing the local gravitational acceleration g: this can be recognized
as the relativity principle (imagine Einstein in an elevator).
The energy function is
h = ˙
@L
@˙
− L
= ˙
ml2 ˙ + ml( ˙X cos − ˙Y sin )
−
1
2ml2 ˙ 2 + ml ˙ ( ˙X cos − ˙Y sin ) +
1
2mV 2 + mgl cos + mgY
=
1
2ml2˙2 − mgl cos −
1
2mV 2 − mgY
The first two terms are the usual expression for the energy of a pendulum hanging from
a fixed support (or the energy with respect to a frame moving with the support), but there
are extra terms.
Since the Lagrangian is not homogeneous in the second order with respect to ˙ (through
the terms ˙ ˙X , ˙ ˙Y ), the energy function is not equal to the mechanical energy, which we
can calculate:
E = T + V
=
1
2ml2˙2 +
1
2mV 2 + ml ˙ ( ˙X cos − ˙Y sin ) − mgl cos − mgY
= h + ml ˙ ( ˙X cos − ˙Y sin ) + mV 2
We can calculate the time derivative of the energy from this expression:
E =
1
2ml2˙2 +
1
2mV 2 + ml ˙ ( ˙X cos − ˙Y sin ) − mgl cos − mgY
dE
dt
= ml2 ˙ ¨ + m˙R · ¨R + ml¨( ˙X cos − ˙Y sin ) + ml ˙ (¨X cos − ¨ Y sin )
−ml ˙ 2( ˙X sin + ˙Y cos ) + mgl ˙ sin − mg˙Y
= −ml ˙ (¨X cos − ¨ Y sin + g sin ) + m˙R · ¨R + ml¨( ˙X cos − ˙Y sin ) + ml ˙ (¨X cos − ¨ Y sin )
−ml ˙ 2( ˙X sin + ˙Y cos ) + mgl ˙ sin − mg˙Y
= m˙R · ¨R + ml¨( ˙X cos − ˙Y sin ) − ml ˙ 2( ˙X sin + ˙Y cos ) − mg˙Y
where we have used Lagrange’s equation −l¨ = ¨X cos − ¨ Y sin +g sin to obtain the final
expression.
2