Ventilator-associated pneumonia pathogenesis involves aspiration of the bacterial organisms from the oropharynx into the lungs and subsequently causes failure of the defense system of the patients in clearing the bacteria, which leads to the development of a lung infection such as VAP.11
Mechanical ventilation for airway support can be a source of infection. It is an important part in intensive care provision for patients who are acutely and critically ill. Although it is beneficial to patients, it can impair the clearance of mucociliary process, causing retention of secretions, occlusion of the airway, atelectasis, and pneumonia.12 Aspiration of orapharyngeal secretions that are contaminated can lead to the development of VAP. These secretions pool above the TT cuff and eventually enter into the lower respiratory tract through the leaking around the cuff of the TT.9
Ventilator-associated pneumonia can worsen gas exchange, increase the load of secretions, and can potentially lead to deterioration of the function of other body organs such as the heart. Complications can delay the weaning process, prolong hospital stay, and increase mortality, which can result in higher costs of health care. Ventilator-associated pneumonia is associated with increase in morbidity, MV duration, and length and cost of stay in the hospital. Most hospitals have developed clinical preventive care strategies called the “care bundles,” which showed effective reduction rate in VAP. Many preventive measures such as oral care routine with an antiseptic solution and elevation of the head of the bed are being implemented to prevent VAP. Chlorhexidine oral decontamination is also a widely researched strategy that can help in preventing VAP.9,13