ABSTRACT The objective of this study was to elaborate liposomes, through the lipid film hydration methodology, to nanoen- capsulate phenolic compounds of Spirulina LEB-18 and Chlorella pyrenoidosa microalgae, and evaluate their physicochemical characteristics and storage stability for 21 days. The total phenolic compounds were evaluated using a calibration curve of gallic acid using methanol and ethanol as extraction solvents. The size and polydis- persity index of nanovesicles were determined by light scattering and the percentage encapsulation efficiency was determined by a centrifugation process. The stability of the liposomes at storage time was measured by zeta potential for 21 days. The methanol extracts from Spirulina had a higher content of phenolic compounds (2.62 mg gallic acid∙g−1 of microalgae) compared to the extracts of Chlorella. However, liposomes with ethanolic ex- tracts of the two algae showed higher encapsulation efficiency. The value was higher (96.40%) for Chlorella. All samples obtained nanometric size, with the highest value obtained for the liposome containing ethanol extract of Chlorella (239 nm) differing significantly (p ≤ 0.05) from the others. The liposomes containing extracts of Spiru- lina were more stable during the 21 days of storage, whereas, those consisting of ethanol extract showed no sig- nificant difference (p ≤ 0.05) throughout this period.