Clinical data
The study was approved by the Paraiba State University Ethics Committee (Opinion No. 0146.0.133.000-07). It was a phase II and cross-interventionist clinical trial, using the flour of the yellow passion fruit peel as a food supplement. The flour was produced by “A.S.S. Neto’s Alimentos Ltda” (CNPJ 82.112.708/0001-20) located in Rio de Janeiro under the guidance of Professor Dr. Armando Oliveira Ubirajara Sabaa Srur.
The patients were classified according to the American Diabetic Association (ADA) [16] and their selection occurred through random sampling from the population attended by the Pharmaceutical Care Program (PROATENFAR) from the Paraiba State University (UEPB). The study excluded patients considered unfit during the interview and/or physical examination, which showed changes in laboratory tests such as: liver and renal dysfunction, cardiac severe changes, alcoholism and those who changed diet, medical treatment or physical activity during the study.
From June 2007 to June 2008, 60 patients were evaluated, 36 women and 24 men, aged between 57 and 73 years, irrespective of ethnicity. Of these, 43 volunteers remained at the end of the experiment, 28 female and 15 male. People who did not remain until the end abandoned the study due to the strong aftertaste of the flour and abdominal discomfort. This has also been reported in other studies and it is probably due to the hesperidin, a substance present in the passion fruit mesocarp, believed to be responsible for the residual bitter taste in the flour [17]. Future trials need to be developed in order to improve the taste, thereby contributing to a better acceptance of the flour and hence the formulation of functional foods.
Throughout the study, 09 diabetics patients were receiving glyburide, 09 used metformin, others were taking other associations as follows: glyburide and metformin (11 people), metformin and insulin (07), glyburide and insulin (01), insulin alone (05) and only 01 was not being treated with hypoglycemic agents due to be recently diagnosed. The drugs dosage was not changed during the study.
Each volunteer served as his own control. The study protocol followed three different stages and, each one, was carried out monitoring the patients fasting blood glucose levels. In the first stage, we summarize the fasting blood glucose values (FBS) of patients studied for the three months prior to the ingestion of the yellow passion fruit peel flour, when the patients were using drugs only. These data were obtained by analyzing the database of the UEPB Pharmaceutical Care Program (PROATENFAR) where patients have medical care. The second stage involved the measurement of all analysis parameters immediately before the intervention (T0) and during the use of supplemental feeding with the passion fruit flour for 30 and 60 days (T30 and T60). The third stage (GP) consisted of new tests after three months consumption of the flour in order to verify if blood glucose levels would return to baseline values or not.
Blood for laboratory tests was collected in the morning after a 12-hour fasting in the UEPB clinical analysis laboratory to obtain serum, which was packaged and transported in refrigerated containers to the Lauro Wanderley University Hospital Clinical Laboratory, where biochemical tests were realized. Four blood collections were carried out during the following stages: before supplementation (T0), during supplementation (T30 and T60) and after supplementation (GP), in the latter only fasting blood glucose was performed as a final control.
After the collection called T0 (before intervention), each patient under study received seven 30 g plastic bags of flour weekly, corresponding to 17.4 g of total fiber, being 6.3 g of soluble fiber and 11.1 g of insoluble fiber [18], to be eaten throughout the day along with food, which may include, among others, juices, fruits and milk. Because the flour is rich in pectin, a water-soluble fiber, patients were instructed to ingest at least two liters of water per day, since the low intake of this liquid could cause constipation [19].
Anthropometric indicators
Among the anthropometric indicators were recorded: height, weight and Body Mass Index (BMI).
Height and weight were verified using a Filizola metal rod scale, measuring two meters and divided into 0.5 cm fractions with a 150 kg capacity and 100 g increase. The patient was positioned upright, looking towards the horizon, barefooted with their heels together, back straight and arms extended at their sides.
BMI was calculated by dividing weight (kg) by squared height (m2), using the BMI ranges, adopted for nutritional classification according to the World Health Organization [20].
Laboratory data
Serum concentrations of glucose were determined using Biosystems® kits and Biosystem® A-25 analyzer; the determination of baseline insulin values was performed in the IMMULITE® (immunometric procedure) to IR assess in patients and determination of the glycated hemoglobin (HbA1c) was determined by the Biosystems® Turbidimetry method and reference values were based on those adopted by the International Federation of Clinical Chemistry (IFCC).
The insulin variables, HOMA IR and HOMA Beta, were performed in 32 patients of both genders of the same clinical group studied in the same period (19 females and 13 males). The losses were due to insufficient volume of the samples.
HOMA (Homeostasis Model Assessment), is a mathematical model that evaluates the relationship between glycemia and insulin and allows analyzing individuals in different IR severity conditions [21]. Furthermore, it is a low cost method, of easy implementation and large scale use [22]. Two indexes are extracted form it (HOMA IR and HOMA beta), designed to translate the insulin sensitivity and secretory capacity of beta cells. Thus, the model predicts insulinemia and glucose for a given sensitivity and insulin secretion capacity, assuming the RI would be the same in the liver and peripheral tissues in order to estimate insulin sensitivity throughout the body [23].
Reference values for the IR diagnosis - baseline insulin: 2-27 μUI/mL; HOMA IR up to 2.7 and HOMA Beta: 150-380 (“Pró –Sangue” Diagnosis Lab, where insulin dosages were made).
Statistical analyses
At first the data were stored in a Microsoft Excel® sheet. The descriptive statistical analysis was performed using the Epi-Info software, versions 6.04 and 3.4 and SPSS version 14, by applying the paired Student t test. For all statistical tests performed, we considered the 95% confidence interval and a significance level of 5% (p ≤ 0.05). Results were reported as Mean ± Standard Deviation (M ± SD).
Go to:
Results
The participants body weight remained constant in the first 30 days (p = 0.472) and was highest at 60 days (p = 0.000). In the nutritional diagnosis, BMI was used, which had at the beginning of treatment the overall average of 27.76 ± 3.24 kg/m2, at the end of the study, these values became 28.13 ± 3.16; 28.62 ± 2:48; 28.13 ± 3.16, respectively, showing that overweight was present both at baseline, and at the end of treatment (Table (Table11).