The C5.0() function makes it easy to add boosting to our C5.0 decision tree. We simply need to add an additional trials parameter indicating the number of separate decision trees to use in the boosted team. The trials parameter sets an upper limit; the algorithm will stop adding trees if it recognizes that additional trials do not seem to be improving the accuracy. We'll start with 10 trials, a number that has become the de facto standard, as research suggests that this reduces error rates on test data by about 25 percent: