Vegetation and soil cover are essential indicators of grassland health or degradation (Zhang et al 2013). Therefore, we visually estimated the percentages of vegetation, soil, and rock cover. However, due to observer estimation error, the vegetation cover estimates did not yield satisfying model results. To increase accuracy, we photographed the ground vegetation cover and further used these digital images to determine vegetation cover. Therefore each subplot was photographed with a handheld digital camera (Panasonic LUMIX DMC-TZ1, 5 Megapixel). Photos were taken from a distance to the canopy height over plain ground at nadir 140 cm. We used the image processing program Photoshop CS5 version 12 (Adobe Systems, Mountain View, CA) to calculate the vegetation cover of each subplot. Within each subplot image, we identified pixels that represented vegetation and used the ratio of vegetation pixels to total image pixels to define the percentage of vegetation cover.We further distinguished between the covers of vascular plants and mosses, as mosses considerably contribute to the greenness of sparsely vegetated terrain (Karnieli et al. 2002, 1996). Finally, the plot vegetation cover was computed from the mean of the embedded subplot values calculated before. Altogether, 5 plots were detected as outliers and were removed from further analysis. The remaining 93 plots were then grouped into 4 classes of degradation intensity, based on their percentage of vegetation cover (Table 1), a classification comparable to those used in other studies. We used the Wilcoxon rank sum test with Bonferroni correction method for post-hoc class comparisons. All analyses were performed using the R Project statistical computing software (R Core Team 2014)