In this section energy band calculation using the tight-binding approximation or the linear-combination-of-atomic-orbits (LCAO) method is depicted. The LCAO method, which was first proposed by Bloch, is often used to
calculate the electronic states of core electrons in a crystalline solid. It is generally known that core electrons are tightly bound to the individual atoms, which interact with one another within the crystal lattice. In this case, the construction of electron wave functions is achieved using the LCAO method, and the energy bands of electrons are calculated for the corresponding periodic crystal potential. The atomic orbitals are centered on one of the constituent atoms of the crystal. The resulting wave functions are then substituted into the Schrödinger equation, and the energy values are calculated by a procedure similar to that of the NFE approximation described in Section 4.5. In order to apply the LCAO method to core electrons in a crystalline solid, the solution for the free atomic orbital wave functions must be obtained first. This is discussed next.
If φn(r - Rj) represents the atomic orbital wave functions centered at the lattice site Rj, then the wave functions of the crystal orbits φk(r) corresponding to the wave vector krmay be represented by a Bloch sum, which is
()()()kjnjrCkrRφφ= Σ (4.84)
The summation in Eq. (4.84) extends over all the constituent atoms of the crystal. The coefficient Cj(K), which satisfies the Bloch condition, can be written as
()jikRjCke⋅= (4.85)
Now substituting Eq. (4.85) into Eq. (4.84) one obtains
()()()(),jikrRikrikrknjjreerReUφφ−⋅−⋅=−=Σ (4.86)
To satisfy the Bloch condition, the summation given by Eq. (4.86) must have the periodicity of the crystal lattice.
The LCAO method is clearly an approximation to the true crystal orbitals. This method is adequate when the interatomic spacing is large enough such that overlapping among the atomic orbital wave functions φn(r - Rj) is negligible. Thus, the LCAO method is most suitable for the tightly bound core electrons, and is frequently referred to as the tight-binding approximation. Using this method to derive the wave functions and energy band schemes for the core electrons of a crystalline solid is discussed next.
If φn(r -Rj) represents a set of atomic orbital wave functions that satisfy the free-atom Schrödinger equation, then one can write
()()()(22*2njnojnjnonrRVrRrRErRmφφ⎛⎞−∇−+−−=−⎜⎟⎜⎟⎝⎠h (4.87)
Where Vno(r – Rj) is the free atomic potential of the Rjth atom. The wave functions for the crystal orbitals may be expressed in term of a Bloch sum, which is given by
()()()1/21jikrRikrknreerNVφφ−−⋅⎛⎞=−⎜⎟⎝⎠
()1/21ikrkeurNV⋅⎛⎞=⎜⎟⎝⎠ (4.88)
Where uk(r) is the Bloch function. In Eq. (4.88), the atomic wave functions are being normalized (i.e., N represents the total number of atoms in the crystal). The factor (1/NV)1/2 is the normalization constant for the Bloch sum if overlapping of the atomic orbitals centered at different atomic sites is negligible. Thus, Eq. (4.88) is a good approximation for the crystal orbitals, provided that the energy levels of the atomic orbits are nondegenerate and overlapping between the orbital wave functions of the neighboring atoms is negligible. This condition can be expressed by
()()*njnirRrRdr φφ−−=∫ (4.89)
Note that in Eq.(4.89), δij = 0 if i ≠ j. Now, substituting Eq. (4.88) into Eq. (4.87), multiplying Eq. (4.87) by the conjugate wave functions, φn*(r - Ri), and integrating the expression over the entire space, one obtains
()()*3kkkErHrφφ=∫
()()()()22*312jiikRRninojnjijerRVrRrRdrNVmφφ⋅−⎧⎡⎤∇⎪⎛⎞=−−+−⎨⎢⎥⎜⎟⎝⎠⎪⎣⎦⎩Σ∫h
()()()()*jiikRRnjjnjijerRVrRrRdrφφ⋅−⎫⎪′+−−−⎬⎪⎭Σ∫ (4.90)
Using Eq. (4.89), Eq. (4.90) can be rewritten as follows:
()ijijikRknonnijREERe⋅=−−Σαβ (4.91)
Where Rij = Rj – Ri, and
22*12nonnonENVmφ∇=−+⎡⎤⎛⎞⎢⎥⎜⎟⎝⎠⎣⎦∫h (4.92)
()()2nnijrRVrRdrαφ′=−−−∫ (4.93)
ในวงการพลังงานส่วนนี้ คำนวณโดยใช้วิธีเชิงเส้นชุดของอะตอมวงโคจร (LCAO) หรือประมาณแน่นผูกเป็นภาพ มักใช้วิธี LCAO ที่แรกถูกนำเสนอ โดยเม็ดเลือดขาว การคำนวณอิเล็กทรอนิกส์สถานะของอิเล็กตรอนในแกนในของแข็งที่เป็นผลึก มันเป็นที่รู้จักกันหลักที่อิเล็กตรอนถูกผูกไว้แน่นกับอะตอมแต่ละตัว ซึ่งโต้ตอบกันภายในโครงตาข่ายประกอบคริสตัลโดยทั่วไป ในกรณีนี้ ทำการก่อสร้างของฟังก์ชันคลื่นของอิเล็กตรอนโดยใช้วิธี LCAO และแถบพลังงานของอิเล็กตรอนที่คำนวณสำหรับคริสตัลงวดสอดคล้องกันที่อาจเกิดขึ้น Orbitals อะตอมเป็นศูนย์กลางของอะตอมธาตุของผลึก ฟังก์ชันคลื่นผลลัพธ์แล้วจะแทนลงในสมการวิน และคำนวณค่าพลังงาน ด้วยกระบวนการประมาณ NFE ที่อธิบายไว้ในหัวข้อ 4.5 การใช้วิธีการ LCAO กับหลักอิเล็กตรอนในผลึกของแข็ง การแก้ฟรีอะตอมของวงโคจรคลื่นฟังก์ชันต้องสามารถรับแรก นี้จะกล่าวถึงต่อไปถ้า φn (r - Rj) แทนอะตอมของวงโคจรคลื่นฟังก์ชันไซต์โครงตาข่ายประกอบ Rj แล้วแสดงฟังก์ชันคลื่นของ φk(r) วงโคจรคริสตัลที่สอดคล้องกับ krmay เวกเตอร์คลื่นตามผลเม็ดเลือดขาว ซึ่งเป็นkjnjrCkrRφφ ()()() =Σ (4.84)รวมใน Eq. (4.84) ขยายออกไปเกินส่วนประกอบต่าง ๆ ของอะตอมของผลึก ค่าสัมประสิทธิ์ Cj(K) ซึ่งเป็นไปตามเงื่อนไขเม็ดเลือดขาว เขียนได้เป็นjikRjCke⋅ () = (4.85)ตอนนี้แทน Eq. (4.85) เป็น Eq. (4.84) หนึ่งเหตุผล()()()() jikrRikrikrknjjreerReUφφ−⋅−⋅ =− =Σ (4.86)เพื่อตอบสนองสภาพเม็ดเลือดขาว รวมโดย Eq. (4.86) ต้องมีประจำงวดของโครงตาข่ายประกอบคริสตัลวิธี LCAO คือ การประมาณ orbitals คริสตัลแท้ชัดเจน วิธีการนี้มีเพียงพอเมื่อระยะห่าง interatomic มีขนาดใหญ่พอที่ทับซ้อนระหว่าง φn อะตอมฟังก์ชันคลื่นของวงโคจร (r - Rj) เป็นระยะ วิธี LCAO เหมาะสมที่สุดสำหรับอิเล็กตรอนหลักผูกแน่น และมักจะเรียกว่าประมาณผูกแน่นต่าง ๆ ใช้วิธีการนี้สามารถรับฟังก์ชันคลื่นและพลังงานโครงร่างวงอิเล็กตรอนหลักของของแข็งผลึกจะกล่าวต่อไปถ้า φn(r-Rj) แสดงถึงชุดของอะตอมฟังก์ชันคลื่นของวงโคจรที่ตรงกับสมการวินอะตอมอิสระ แล้วหนึ่งสามารถเขียน()()() (22 * 2njnojnjnonrRVrRrRErRmφφ⎛⎞−∇− + −− = −⎜⎟⎜⎟⎝⎠h (4.87)ซึ่ง Vno (r-Rj) อยู่เป็นอะตอมอิสระของอะตอม Rjth ฟังก์ชันคลื่นสำหรับ orbitals คริสตัลอาจแสดงในเทอมของผลเม็ดเลือดขาว ซึ่งถูกกำหนดโดย()()() 1/21jikrRikrknreerNVφφ−−⋅⎛⎞ =−⎜⎟⎝⎠() 1/21ikrkeurNV⋅⎛⎞ =⎜⎟⎝⎠ (4.88)Where uk(r) is the Bloch function. In Eq. (4.88), the atomic wave functions are being normalized (i.e., N represents the total number of atoms in the crystal). The factor (1/NV)1/2 is the normalization constant for the Bloch sum if overlapping of the atomic orbitals centered at different atomic sites is negligible. Thus, Eq. (4.88) is a good approximation for the crystal orbitals, provided that the energy levels of the atomic orbits are nondegenerate and overlapping between the orbital wave functions of the neighboring atoms is negligible. This condition can be expressed by()()*njnirRrRdr φφ−−=∫ (4.89)Note that in Eq.(4.89), δij = 0 if i ≠ j. Now, substituting Eq. (4.88) into Eq. (4.87), multiplying Eq. (4.87) by the conjugate wave functions, φn*(r - Ri), and integrating the expression over the entire space, one obtains()()*3kkkErHrφφ=∫()()()()22*312jiikRRninojnjijerRVrRrRdrNVmφφ⋅−⎧⎡⎤∇⎪⎛⎞=−−+−⎨⎢⎥⎜⎟⎝⎠⎪⎣⎦⎩Σ∫h()()()()*jiikRRnjjnjijerRVrRrRdrφφ⋅−⎫⎪′+−−−⎬⎪⎭Σ∫ (4.90)Using Eq. (4.89), Eq. (4.90) can be rewritten as follows:()ijijikRknonnijREERe⋅=−−Σαβ (4.91)Where Rij = Rj – Ri, and22*12nonnonENVmφ∇=−+⎡⎤⎛⎞⎢⎥⎜⎟⎝⎠⎣⎦∫h (4.92)()()2nnijrRVrRdrαφ′=−−−∫ (4.93)
การแปล กรุณารอสักครู่..
