It is obvious therefore that a significant portion of the required increases in food production cannot be attained by the further deployment of additional land and water resources. The increased use of agrochemicals is also not a sustainable option on account of its deleterious impacts on health and the environment. Simply, more food must be produced with fewer inputs. The admixture of complementary solutions being adduced for feeding the world’s teeming population with fewer agricultural inputs and with minimal ecological footprints constitute the “greener”, ecosystem-based and knowledge-intensive paradigm that is commonly referred to as sustainable crop production intensification [10,11]. FAO [11] recommended that, for realizing the imperative of the low-input agriculture being proffered for the 21st Century, farmers require a suite of improved crop varieties that are genetically diverse, climate change resilient, input use-efficient, high yielding, have enhanced nutritional and other quality attributes and have been bred for adaptation to a range of agroecosystems and farming practices. But, the envisaged genetically diverse portfolio of suitable crop varieties are neither available to farmers [2,12,13] nor do the current breeding strategies hold promise for delivering them [14]. The extremely narrow genetic base of the available varieties of crops and the parental lines for breeding new ones nullify efforts to enhance productivities in farmers’ fields, increase vulnerabilities and thereby imperil food security.