Fig. 4 shows the XRD patterns obtained from unirradiated and
irradiated CW 316 SS up to 3.7 dpa. Peaks characteristic of austenite
are visible and consistent with those obtained from literature
[26]. In addition, two small peaks characteristic of a ferrite appear
on all specimens, which originate from residual ferrite species during
the manufacturing process of 316 SS. From a comparison
between both patterns, it is evident that the CW 316 SS is primarily
austenitic after ion irradiation. The X-ray penetration depth for the
peak of c (111) is 1.5 lm, which corresponds to the irradiation
damage depth. Fig. 4(b) shows the enlarged peak of c (111). It is
clear that 2h decreases in CW 316 SS with increasing ion dose,
which conforms to the increase lattice parameter values after ionirradiation. The lattice strain (distortion) of CW 316 SS under ion
irradiation may be explained by the presence of irradiationinduced
dislocation defects (Fig. 2). From the results, we can infer
that the dislocation loops in this study caused stress in the CW 316
SS lattice, thus provoking an increase in the lattice parameters for
the irradiated specimens. In addition, there is no evolution of the
number density of dislocation loops between the different irradiation
doses, although the mean size is larger for the sample irradiated
to 3.7 dpa. This may explain the further increase of the
lattice parameter as the ion dose increased from 0.62 to 3.7 dpa
(Fig. 4(b)). The TEM observations are consistent with the XRD
results.
Fig. 4 shows the XRD patterns obtained from unirradiated and
irradiated CW 316 SS up to 3.7 dpa. Peaks characteristic of austenite
are visible and consistent with those obtained from literature
[26]. In addition, two small peaks characteristic of a ferrite appear
on all specimens, which originate from residual ferrite species during
the manufacturing process of 316 SS. From a comparison
between both patterns, it is evident that the CW 316 SS is primarily
austenitic after ion irradiation. The X-ray penetration depth for the
peak of c (111) is 1.5 lm, which corresponds to the irradiation
damage depth. Fig. 4(b) shows the enlarged peak of c (111). It is
clear that 2h decreases in CW 316 SS with increasing ion dose,
which conforms to the increase lattice parameter values after ionirradiation. The lattice strain (distortion) of CW 316 SS under ion
irradiation may be explained by the presence of irradiationinduced
dislocation defects (Fig. 2). From the results, we can infer
that the dislocation loops in this study caused stress in the CW 316
SS lattice, thus provoking an increase in the lattice parameters for
ที่ 1 ตัวอย่าง นอกจากนี้ มีการวิวัฒนาการของ
จำนวนความหนาแน่นของลูป เคลื่อนระหว่างปริมาณรังสี
แตกต่างกัน แม้ว่าหมายถึงขนาดคือขนาดใหญ่สำหรับตัวอย่างที่ฉายรังสี
ราคาประมาณ . นี้อาจอธิบายเพิ่มต่อไปของแลตทิซพารามิเตอร์เป็นไอออน
dose เพิ่มขึ้นจาก 1 ถึง 3.7 DPA
( รูป 4 ( b ) ) เต็มๆ สังเกตมีความสอดคล้องกับ XRD
ผลลัพธ์
การแปล กรุณารอสักครู่..
