Anti-Markovnikov reactions[edit]
Mechanisms that avoid the carbocation intermediate may react through other mechanisms that are regioselective, against what Markovnikov's rule predicts, such as free radical addition. Such reactions are said to be anti-Markovnikov, since the halogen adds to the less substituted carbon, exactly the opposite of Markovnikov reaction. Again, like the positive charge, the radical is most stable when in the more substituted position. The anti-Markovnikov rule can be best explained by taking an example of addition of hydrogen bromide to propene in the presence of benzoyl peroxide. The reaction of HBr with substituted alkenes was instrumental in the study of free-radical additions. Early chemists discovered that the reason for the variability of the ratio of Markovnikov to anti-Markovnikov reaction products was due to the unrealized presence of free radical generating substances such as peroxides. The explanation is that HBr produces a Br radical, which then reacts with the double bond. Since the bromine atom is very large, it is more probable that it will encounter and react with the least substituted carbon, in this case the terminal carbon, to produce a primary addition product instead of a, in the case of propene, secondary addition product.
A new method of anti-Markovnikov addition has been described by Hamilton and Nicewicz, who utilize organic molecules and light from a low-energy diode to turn the alkene into a cation radical.[4] [5]
Anti-Markovnikov behaviour extends to more chemical reactions than just additions to alkenes. One anti-Markovnikov manifestation is observed in hydration of phenylacetylene that, gold-catalyzed, gives regular acetophenone but with a special ruthenium catalyst[6] the other regioisomer 2-phenylacetaldehyde:[7]