Proof
Let a and b be any two real numbers. Consider the number x defined by
x = ab + (-a)(b) + (-a)(-b).
We can write
x = ab + (-a)[ (b) + (-b) ] (factor out -a)
= ab + (-a)(0)
= ab + 0
= ab.
Also,
x = [ a + (-a) ]b + (-a)(-b) (factor out b)
= 0 * b + (-a)(-b)
= 0 + (-a)(-b)
= (-a)(-b).
So we have
x = ab
and
x = (-a)(-b)
Hence, by the transitivity of equality, we have
ab = (-a)(-b).