Nuclear decay[edit]
Main article: Radioactivity
Eighty elements have at least one stable isotope which is never observed to decay, amounting to a total of about 254 stable isotopes. However, thousands of isotopes have been characterized as unstable. These "radioisotopes" decay over time scales ranging from fractions of a second to trillions of years.
The most stable nuclei fall within certain ranges or balances of composition of neutrons and protons: too few or too many neutrons (in relation to the number of protons) will cause it to decay. For example, in beta decay a nitrogen-16 atom (7 protons, 9 neutrons) is converted to an oxygen-16 atom (8 protons, 8 neutrons)[19] within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is converted by the weak interaction into a proton, an electron and an antineutrino. The element is transmuted to another element, with a different number of protons.
In alpha decay (which typically occurs in the heaviest nuclei) the radioactive element decays by emitting a helium nucleus (2 protons and 2 neutrons), giving another element, plus helium-4. In many cases this process continues through several steps of this kind, including other types of decays (usually beta decay) until a stable element is formed.
In gamma decay, a nucleus decays from an excited state into a lower energy state, by emitting a gamma ray. The element is not changed to another element in the process (no nuclear transmutation is involved).
Other more exotic decays are possible (see the main article[which?]). For example, in internal conversion decay, the energy from an excited nucleus may eject one of the inner orbital electrons from the atom, in a process which produces high speed electrons, but is not beta decay, and (unlike beta decay) does not transmute one element to another.
Nuclear decay[edit]Main article: RadioactivityEighty elements have at least one stable isotope which is never observed to decay, amounting to a total of about 254 stable isotopes. However, thousands of isotopes have been characterized as unstable. These "radioisotopes" decay over time scales ranging from fractions of a second to trillions of years.The most stable nuclei fall within certain ranges or balances of composition of neutrons and protons: too few or too many neutrons (in relation to the number of protons) will cause it to decay. For example, in beta decay a nitrogen-16 atom (7 protons, 9 neutrons) is converted to an oxygen-16 atom (8 protons, 8 neutrons)[19] within a few seconds of being created. In this decay a neutron in the nitrogen nucleus is converted by the weak interaction into a proton, an electron and an antineutrino. The element is transmuted to another element, with a different number of protons.In alpha decay (which typically occurs in the heaviest nuclei) the radioactive element decays by emitting a helium nucleus (2 protons and 2 neutrons), giving another element, plus helium-4. In many cases this process continues through several steps of this kind, including other types of decays (usually beta decay) until a stable element is formed.In gamma decay, a nucleus decays from an excited state into a lower energy state, by emitting a gamma ray. The element is not changed to another element in the process (no nuclear transmutation is involved).Other more exotic decays are possible (see the main article[which?]). For example, in internal conversion decay, the energy from an excited nucleus may eject one of the inner orbital electrons from the atom, in a process which produces high speed electrons, but is not beta decay, and (unlike beta decay) does not transmute one element to another.
การแปล กรุณารอสักครู่..
