2.6. Gaussian fit
In addition to caffeine spectra there are interfering bands from other coffee components extracted by dichloromethane and the peak of these bands was observed at the wavelength of 308–310 nm. The compounds attributed to this are known to be chlorogenic acid related compounds (p-coumaroquinic acid). It is clear that this interfering band has an effect on the maximum peak of caffeine. Therefore, in this research matrices were eliminated by Gaussian fit. The peak absorbance for calculating the concentration of caffeine was obtained after subtracting the Gaussian fit from the total caffeine spectra.
3. Results and discussion
3.1. UV–vis absorption of caffeine in water and dichloromethane
The UV–vis absorption spectrum of caffeine in water is found to be in the region of 243–302 nm at room temperature. It is clearly shown in Fig. 1 that the spectral intensity of caffeine drops to zero at wavelength greater than 302 nm, on the other hand a new peak absorbance is noticed at a wavelength below 243 nm. This new spectrum is expected to be the peak absorbance due to the solvent. The peak absorbance of the solution is found to be A = 1.224 at the maximum wavelength View the MathML source. The maximum peak absorbance for caffeine observed in these experiments was quite similar to those reported by Clarke and Macrae (1985). The molar decadic absorption coefficient measuring the intensity of optical absorption at a given wavelength was calculated using Beer–Lambert’s equation ( Liptay, 1969). The molar decadic absorption coefficient of caffeine in water is computed and value of εmax = 1115 m2 mol−1 is obtained. The transitional dipole moment of the dissolved molecule, which is related to the molar decadic absorption coefficient by the integral absorption coefficient, was calculated using the following equation ( Liptay, 1969 and Michale, 1999):
2.6. gaussian พอดีนอกจากคาเฟอีน แรมสเป็คตรามีวงรบกวนจากส่วนประกอบอื่น ๆ กาแฟที่สกัด ด้วย dichloromethane และจุดสูงสุดของวงเหล่านี้ถูกสังเกตที่ความยาวคลื่นของ 308-310 nm สารประกอบที่เกิดจากนี้ทราบว่าเป็น สารที่เกี่ยวข้อง chlorogenic กรด (กรด p-coumaroquinic) เป็นที่ชัดเจนว่า วงนี้รบกวนมีผลกระทบสูงสุดสูงสุดของคาเฟอีน ดังนั้น ในงานวิจัยนี้ เมทริกซ์ถูกตัดออก โดย Gaussian พอดี Absorbance สูงสุดสำหรับการคำนวณความเข้มข้นของคาเฟอีนได้รับหลังจากลบ Gaussian ที่พอดีจากแรมสเป็คตราคาเฟอีนรวม3. ผลลัพธ์ และสนทนา3.1. UV – vis ดูดซึมคาเฟอีนในน้ำและ dichloromethaneThe UV–vis absorption spectrum of caffeine in water is found to be in the region of 243–302 nm at room temperature. It is clearly shown in Fig. 1 that the spectral intensity of caffeine drops to zero at wavelength greater than 302 nm, on the other hand a new peak absorbance is noticed at a wavelength below 243 nm. This new spectrum is expected to be the peak absorbance due to the solvent. The peak absorbance of the solution is found to be A = 1.224 at the maximum wavelength View the MathML source. The maximum peak absorbance for caffeine observed in these experiments was quite similar to those reported by Clarke and Macrae (1985). The molar decadic absorption coefficient measuring the intensity of optical absorption at a given wavelength was calculated using Beer–Lambert’s equation ( Liptay, 1969). The molar decadic absorption coefficient of caffeine in water is computed and value of εmax = 1115 m2 mol−1 is obtained. The transitional dipole moment of the dissolved molecule, which is related to the molar decadic absorption coefficient by the integral absorption coefficient, was calculated using the following equation ( Liptay, 1969 and Michale, 1999):
การแปล กรุณารอสักครู่..
