tReduced graphene oxide (rGO)–copper oxide nanocomposites are prepared by covalent grafting of CuOnanorods on the rGO skeleton. Chemical and structural features of rGO–CuO nanocomposites are probedby FTIR, XPS, XRD and HRTEM analyses. Photocatalytic potential of rGO–CuO nanocomposites is exploredfor reduction of CO2into the methanol under the visible light irradiation. The breadth of CuO nanorods andthe oxidation state of Cu in the rGO–CuO/Cu2O nanocomposites are systematically varied to investigatetheir photocatalytic activities. The pristine CuO nanorods exhibited very low photocatalytic activity owingto fast recombination of charge carriers and yielded 175 mol g−1methanol, whereas rGO–Cu2O andrGO–CuO exhibited significantly improved photocatalytic activities and yielded five (862 mol g−1) andseven (1228 mol g−1) folds methanol, respectively. The superior photocatalytic activity of CuO in therGO–CuO nanocomposites was attributed to slow recombination of charge carriers and efficient transferof photo-generated electrons through the rGO skeleton. This study further excludes the use of scavengingdonor.