and expressed in terms of NeP2O5eK2O were quite varying, fromthe relat การแปล - and expressed in terms of NeP2O5eK2O were quite varying, fromthe relat ไทย วิธีการพูด

and expressed in terms of NeP2O5eK2

and expressed in terms of NeP2O5eK2O were quite varying, from
the relatively low nitrogen content of 6e14e12,13e13e21,15e7e8,
15e8e8, 15e15e15, 16e8e8, 16e16e16, to the high nitrogen
content of 20e20e0, 21e0e0, 21e4e2, 21e8e8, 40e0e0 and
46e0e0 (urea). The most widely used was 15e15e15, which was
applied at the rate of 19e938 kg ha1 y by all farms according to the
questionnaires (Table 2). Only a small fraction of farmers used urea
(6.8% of total N applied). Overall, nitrogen application rate was
199.0 203.6 kg N ha1 y (meanstandard deviation from 59
questionnaires).
Besides chemical fertilizer, filter cake and farmyard (swine)
manure were also applied as organic fertilizers. For the filter cake,
farmers believe that it contains high nutrients, but the nutritional
values are not exactly known. Our analysis reveals that this filter
cake contained 38.0 0.4% and 0.36 0.01% of C and N, respectively
(meanstandard deviation of 5 measurements). From the
application rate of 13 ton of dry matter ha1 y, the carbon input
through its application was 5 ton C ha1 y and the nitrogen was
50 kg N ha1 y. In addition, the liquid swine manure was applied at
the rate of 2083.3 L ha1 y. Based on its N content of
1000e1300 mg L1 y, the average input of N through swine manure
application was 2.4 kg N ha1 y. According to surveys, 90% of
sugarcane farms applied filter cake and 59% applied liquid swine
manure.
In the same manner as fossil fuel, emissions from chemical
fertilizationwere also calculated separately from the production and
utilization phases. The emissions during production were estimated
from the amount of chemical fertilizer used on farms multiplied by
Thailand’s country specific emission factors (The National Technical
Committee on Product Carbon Footprinting (Thailand), 2010). As
a result, the GHGs emissions from N, P and K production were estimated
as 365.6, 23.6 and 15 kg CO2e ha1 y (Table 3).
Application of N fertilizer can result in both direct and indirect
emissions of N2O from soil. In this study, direct emissions were
estimated from N application through synthetic fertilizer, manure
application and organic fertilizer. On the other hand, an indirect
emissionwas estimated for atmospheric deposition of NOx and NH3
and leaching and runoff. In addition, direct CO2 emission from urea
application was also estimated. Based on the amount of N inputs
(median value of combined all farm sizes) and emission factors from
IPCC, the N2O emission from direct emission was estimated as
1.43 kg N2Oha1 y, equivalent to 426.3 kg CO2e ha1 y (dividing into
419.1, 7.1, 0.1 kg CO2e ha1 y from synthetic fertilizer, swine manure,
filter cake, respectively). The N2O from indirect emission was
0.48 kg N2Oha1 y, or 142.1 kg CO2e ha1 y. Totally, N2O emission
from both sources was 1.91 kg N2Oha1 y, or 568.4 kg CO2e ha1 y.
Urea application alone contributed 262.3 kg CO2e ha1 y (Table 3).
3.2.3. Emissions from transportation of sugarcane to sugar mill
The cane yieldwas transported to the sugar mills by truck (using
diesel as fuel). The GHGs emission from production and utilization
of that diesel was estimated in the similar manner as for fossil fuel
use on farm. From the rate of diesel use, distance between farm and
sugar mill, and the sugarcane yield per area, it was found that the
total amount of diesel use was 100 L ha1. The production of this
portion of diesel resulted in the emission of 52 kg CO2e ha1. In
addition, the utilization of the same portion of diesel also emitted
287.2 kg CO2e ha1 (Table 3).
3.2.4. Emission from biomass burning
Typically, sugarcane farmers in eastern Thailand practice two
modes of burning; pre-harvest and post-harvest burnings. Burning
currently is not encouraged because it reduces sugar quality and it
releases a numbers of pollutants. However, some farmers still
practice burning due to the fact that it helps facilitate the harvest,
reduces harvest cost and facilitates land preparation. However,
both burned and unburned sugarcane fields were harvested by
human labor. From the fraction of area fraction that was burned the
biomass of 17.2 2.4 ton ha1 (mean standard deviation of 15
samples), it was estimated that biomass burning emitted greenhouse
gases in terms of CH4 and N2O of about 17.7 kg CH4 ha1 y
and N2O 0.367 kg N2Oha1 y, respectively (Table 3). In terms of CO2
equivalence, CH4 emission was 443 kg CO2e ha1 y and N2O emission
was 109.5 kg CO2e ha1 y. The total greenhouse gas emission
from the burning activity in terms of CO2 equivalent was
552.5 kg CO2e ha1y (Table 3). Comparing among field activities,
burning contributes 19% of greenhouse gas emissions (Fig. 3 (a)).
Thus, the case of eastern Thailand is quite different from those
found elsewhere, i.e. in southern Brazil where around 44% of total
emissions came from burning as above 85% of the farm was cropped
under burned harvest (de Figueiredo et al., 2010). Moreover
biomass burning also emitted other pollutants such as carbon
monoxide (CO). The amount of CO emissions from burning in the
present study was estimated at 483 kg CO ha1.
3.2.5. Summary of greenhouse gas emissions from sugarcane
cultivation
In total, emissions of CO2e for sugarcane plantation combined
amongfossil fuel use, chemical and organic fertilizer utilizationwere
2841.9 kg CO2e ha1 y (Table 3). The largest contribution comes from
fertilizer utilization. Calculated based on 62.5 ton cane ha1 y and
1 ton cane that produces 93.2 kg of sugar, in terms of per ton cane
this was 45.47 kg CO2e, and per kg of sugar this was 0.49 kg CO2e
(Table 3).
Table 3
Summary of greenhouse gas emissions (CO2e) from sugarcane cultivation.
Emission sources Emission
kg CO2e
ha1 y
kg CO2e
ton1 canea
kg CO2e
kg1 sugarb
I. Emissions from production of raw material used in sugarcane plantation
(1) Fossil fuel for farm operation (tillage, irrigation, insecticide, herbicide)
(a) Diesel fuel 77.8 1.24 0.01
(b) Gasoline fuel 22.4 0.36 0.004
(2) Diesel fuel (transportation) 52 0.83 0.009
(3) Synthetic fertilizer production
(a) Nitrogen (N) 365.6 5.85 0.06
(b) Phosphorus (P2O5) 23.6 0.38 0.004
(c) Potassium (K2O) 15 0.24 0.003
(4) Herbicide and insecticide 132 2.11 0.02
II. Emissions from sugarcane plantations
(1) Fossil fuel for farm operation (tillage, irrigation, insecticide, herbicide)
(a) Diesel fuel 429.4 6.87 0.07
(b) Gasoline fuel 53.6 0.86 0.01
(2) Diesel fuel (transportation) 287.2 4.59 0.05
(3) Fertilizer utilization
(a) N2O direct emission
-Synthetic N fertilizer 419.1 6.70 0.07
-Liquid swine manure 7.1 0.11 0.001
-Organic fertilizer (filter cake) 0.1 0.002 0.00002
(b) N2O indirect emission
-Emission from atmospheric
deposition of NOx and NH3
46.2 0.74 0.008
-Emission from leaching and runoff 95.9 1.53 0.02
(c) Urea application 262.3 4.20 0.05
(4) Biomass burning
-CH4 443 7.09 0.08
-N2O 109.5 1.75 0.02
Total 2841.9 45.47 0.49
a Calculate base on 62.5 ton cane yield ha1 (average yield data from
questionnaire).
b Calculated based on 1 ton cane can produce 93.2 kg sugar, the average for 4
sugar mills in eastern Thailand during 2003e2007 production year.
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
and expressed in terms of NeP2O5eK2O were quite varying, fromthe relatively low nitrogen content of 6e14e12,13e13e21,15e7e8,15e8e8, 15e15e15, 16e8e8, 16e16e16, to the high nitrogencontent of 20e20e0, 21e0e0, 21e4e2, 21e8e8, 40e0e0 and46e0e0 (urea). The most widely used was 15e15e15, which wasapplied at the rate of 19e938 kg ha1 y by all farms according to thequestionnaires (Table 2). Only a small fraction of farmers used urea(6.8% of total N applied). Overall, nitrogen application rate was199.0 203.6 kg N ha1 y (meanstandard deviation from 59questionnaires).Besides chemical fertilizer, filter cake and farmyard (swine)manure were also applied as organic fertilizers. For the filter cake,farmers believe that it contains high nutrients, but the nutritionalvalues are not exactly known. Our analysis reveals that this filtercake contained 38.0 0.4% and 0.36 0.01% of C and N, respectively(meanstandard deviation of 5 measurements). From theapplication rate of 13 ton of dry matter ha1 y, the carbon inputthrough its application was 5 ton C ha1 y and the nitrogen was50 kg N ha1 y. In addition, the liquid swine manure was applied atthe rate of 2083.3 L ha1 y. Based on its N content of1000e1300 mg L1 y, the average input of N through swine manureapplication was 2.4 kg N ha1 y. According to surveys, 90% ofsugarcane farms applied filter cake and 59% applied liquid swinemanure.In the same manner as fossil fuel, emissions from chemicalfertilizationwere also calculated separately from the production andutilization phases. The emissions during production were estimatedfrom the amount of chemical fertilizer used on farms multiplied byThailand’s country specific emission factors (The National TechnicalCommittee on Product Carbon Footprinting (Thailand), 2010). Asa result, the GHGs emissions from N, P and K production were estimatedas 365.6, 23.6 and 15 kg CO2e ha1 y (Table 3).Application of N fertilizer can result in both direct and indirectemissions of N2O from soil. In this study, direct emissions wereestimated from N application through synthetic fertilizer, manureapplication and organic fertilizer. On the other hand, an indirectemissionwas estimated for atmospheric deposition of NOx and NH3and leaching and runoff. In addition, direct CO2 emission from ureaapplication was also estimated. Based on the amount of N inputs(median value of combined all farm sizes) and emission factors fromIPCC, the N2O emission from direct emission was estimated as1.43 kg N2Oha1 y, equivalent to 426.3 kg CO2e ha1 y (dividing into419.1, 7.1, 0.1 kg CO2e ha1 y from synthetic fertilizer, swine manure,filter cake, respectively). The N2O from indirect emission was0.48 kg N2Oha1 y, or 142.1 kg CO2e ha1 y. Totally, N2O emissionfrom both sources was 1.91 kg N2Oha1 y, or 568.4 kg CO2e ha1 y.Urea application alone contributed 262.3 kg CO2e ha1 y (Table 3).3.2.3. Emissions from transportation of sugarcane to sugar millThe cane yieldwas transported to the sugar mills by truck (usingdiesel as fuel). The GHGs emission from production and utilizationof that diesel was estimated in the similar manner as for fossil fueluse on farm. From the rate of diesel use, distance between farm andsugar mill, and the sugarcane yield per area, it was found that thetotal amount of diesel use was 100 L ha1. The production of thisportion of diesel resulted in the emission of 52 kg CO2e ha1. Inaddition, the utilization of the same portion of diesel also emitted287.2 kg CO2e ha1 (Table 3).3.2.4. Emission from biomass burningTypically, sugarcane farmers in eastern Thailand practice twomodes of burning; pre-harvest and post-harvest burnings. Burningcurrently is not encouraged because it reduces sugar quality and itreleases a numbers of pollutants. However, some farmers stillpractice burning due to the fact that it helps facilitate the harvest,reduces harvest cost and facilitates land preparation. However,both burned and unburned sugarcane fields were harvested byhuman labor. From the fraction of area fraction that was burned thebiomass of 17.2 2.4 ton ha1 (mean standard deviation of 15samples), it was estimated that biomass burning emitted greenhousegases in terms of CH4 and N2O of about 17.7 kg CH4 ha1 yand N2O 0.367 kg N2Oha1 y, respectively (Table 3). In terms of CO2equivalence, CH4 emission was 443 kg CO2e ha1 y and N2O emissionwas 109.5 kg CO2e ha1 y. The total greenhouse gas emissionfrom the burning activity in terms of CO2 equivalent was552.5 kg CO2e ha1y (Table 3). Comparing among field activities,burning contributes 19% of greenhouse gas emissions (Fig. 3 (a)).Thus, the case of eastern Thailand is quite different from thosefound elsewhere, i.e. in southern Brazil where around 44% of totalemissions came from burning as above 85% of the farm was croppedunder burned harvest (de Figueiredo et al., 2010). Moreoverbiomass burning also emitted other pollutants such as carbonmonoxide (CO). The amount of CO emissions from burning in thepresent study was estimated at 483 kg CO ha1.3.2.5. Summary of greenhouse gas emissions from sugarcanecultivationIn total, emissions of CO2e for sugarcane plantation combinedamongfossil fuel use, chemical and organic fertilizer utilizationwere2841.9 kg CO2e ha1 y (Table 3). The largest contribution comes fromfertilizer utilization. Calculated based on 62.5 ton cane ha1 y and1 ton cane that produces 93.2 kg of sugar, in terms of per ton canethis was 45.47 kg CO2e, and per kg of sugar this was 0.49 kg CO2e(Table 3).Table 3Summary of greenhouse gas emissions (CO2e) from sugarcane cultivation.Emission sources Emissionkg CO2eha1 ykg CO2eton1 caneakg CO2ekg1 sugarbI. Emissions from production of raw material used in sugarcane plantation(1) Fossil fuel for farm operation (tillage, irrigation, insecticide, herbicide)(a) Diesel fuel 77.8 1.24 0.01(b) Gasoline fuel 22.4 0.36 0.004(2) Diesel fuel (transportation) 52 0.83 0.009(3) Synthetic fertilizer production(a) Nitrogen (N) 365.6 5.85 0.06(b) Phosphorus (P2O5) 23.6 0.38 0.004(c) Potassium (K2O) 15 0.24 0.003(4) Herbicide and insecticide 132 2.11 0.02II. Emissions from sugarcane plantations(1) Fossil fuel for farm operation (tillage, irrigation, insecticide, herbicide)(a) Diesel fuel 429.4 6.87 0.07(b) Gasoline fuel 53.6 0.86 0.01(2) Diesel fuel (transportation) 287.2 4.59 0.05(3) Fertilizer utilization(a) N2O direct emission-Synthetic N fertilizer 419.1 6.70 0.07-Liquid swine manure 7.1 0.11 0.001-Organic fertilizer (filter cake) 0.1 0.002 0.00002(b) N2O indirect emission-Emission from atmosphericdeposition of NOx and NH346.2 0.74 0.008-Emission from leaching and runoff 95.9 1.53 0.02(c) Urea application 262.3 4.20 0.05(4) Biomass burning-CH4 443 7.09 0.08-N2O 109.5 1.75 0.02Total 2841.9 45.47 0.49a Calculate base on 62.5 ton cane yield ha1 (average yield data fromquestionnaire).b Calculated based on 1 ton cane can produce 93.2 kg sugar, the average for 4sugar mills in eastern Thailand during 2003e2007 production year.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
and expressed in terms of NeP2O5eK2O were quite varying, from
the relatively low nitrogen content of 6e14e12,13e13e21,15e7e8,
15e8e8, 15e15e15, 16e8e8, 16e16e16, to the high nitrogen
content of 20e20e0, 21e0e0, 21e4e2, 21e8e8, 40e0e0 and
46e0e0 (urea). The most widely used was 15e15e15, which was
applied at the rate of 19e938 kg ha1 y by all farms according to the
questionnaires (Table 2). Only a small fraction of farmers used urea
(6.8% of total N applied). Overall, nitrogen application rate was
199.0 203.6 kg N ha1 y (meanstandard deviation from 59
questionnaires).
Besides chemical fertilizer, filter cake and farmyard (swine)
manure were also applied as organic fertilizers. For the filter cake,
farmers believe that it contains high nutrients, but the nutritional
values are not exactly known. Our analysis reveals that this filter
cake contained 38.0 0.4% and 0.36 0.01% of C and N, respectively
(meanstandard deviation of 5 measurements). From the
application rate of 13 ton of dry matter ha1 y, the carbon input
through its application was 5 ton C ha1 y and the nitrogen was
50 kg N ha1 y. In addition, the liquid swine manure was applied at
the rate of 2083.3 L ha1 y. Based on its N content of
1000e1300 mg L1 y, the average input of N through swine manure
application was 2.4 kg N ha1 y. According to surveys, 90% of
sugarcane farms applied filter cake and 59% applied liquid swine
manure.
In the same manner as fossil fuel, emissions from chemical
fertilizationwere also calculated separately from the production and
utilization phases. The emissions during production were estimated
from the amount of chemical fertilizer used on farms multiplied by
Thailand’s country specific emission factors (The National Technical
Committee on Product Carbon Footprinting (Thailand), 2010). As
a result, the GHGs emissions from N, P and K production were estimated
as 365.6, 23.6 and 15 kg CO2e ha1 y (Table 3).
Application of N fertilizer can result in both direct and indirect
emissions of N2O from soil. In this study, direct emissions were
estimated from N application through synthetic fertilizer, manure
application and organic fertilizer. On the other hand, an indirect
emissionwas estimated for atmospheric deposition of NOx and NH3
and leaching and runoff. In addition, direct CO2 emission from urea
application was also estimated. Based on the amount of N inputs
(median value of combined all farm sizes) and emission factors from
IPCC, the N2O emission from direct emission was estimated as
1.43 kg N2Oha1 y, equivalent to 426.3 kg CO2e ha1 y (dividing into
419.1, 7.1, 0.1 kg CO2e ha1 y from synthetic fertilizer, swine manure,
filter cake, respectively). The N2O from indirect emission was
0.48 kg N2Oha1 y, or 142.1 kg CO2e ha1 y. Totally, N2O emission
from both sources was 1.91 kg N2Oha1 y, or 568.4 kg CO2e ha1 y.
Urea application alone contributed 262.3 kg CO2e ha1 y (Table 3).
3.2.3. Emissions from transportation of sugarcane to sugar mill
The cane yieldwas transported to the sugar mills by truck (using
diesel as fuel). The GHGs emission from production and utilization
of that diesel was estimated in the similar manner as for fossil fuel
use on farm. From the rate of diesel use, distance between farm and
sugar mill, and the sugarcane yield per area, it was found that the
total amount of diesel use was 100 L ha1. The production of this
portion of diesel resulted in the emission of 52 kg CO2e ha1. In
addition, the utilization of the same portion of diesel also emitted
287.2 kg CO2e ha1 (Table 3).
3.2.4. Emission from biomass burning
Typically, sugarcane farmers in eastern Thailand practice two
modes of burning; pre-harvest and post-harvest burnings. Burning
currently is not encouraged because it reduces sugar quality and it
releases a numbers of pollutants. However, some farmers still
practice burning due to the fact that it helps facilitate the harvest,
reduces harvest cost and facilitates land preparation. However,
both burned and unburned sugarcane fields were harvested by
human labor. From the fraction of area fraction that was burned the
biomass of 17.2 2.4 ton ha1 (mean standard deviation of 15
samples), it was estimated that biomass burning emitted greenhouse
gases in terms of CH4 and N2O of about 17.7 kg CH4 ha1 y
and N2O 0.367 kg N2Oha1 y, respectively (Table 3). In terms of CO2
equivalence, CH4 emission was 443 kg CO2e ha1 y and N2O emission
was 109.5 kg CO2e ha1 y. The total greenhouse gas emission
from the burning activity in terms of CO2 equivalent was
552.5 kg CO2e ha1y (Table 3). Comparing among field activities,
burning contributes 19% of greenhouse gas emissions (Fig. 3 (a)).
Thus, the case of eastern Thailand is quite different from those
found elsewhere, i.e. in southern Brazil where around 44% of total
emissions came from burning as above 85% of the farm was cropped
under burned harvest (de Figueiredo et al., 2010). Moreover
biomass burning also emitted other pollutants such as carbon
monoxide (CO). The amount of CO emissions from burning in the
present study was estimated at 483 kg CO ha1.
3.2.5. Summary of greenhouse gas emissions from sugarcane
cultivation
In total, emissions of CO2e for sugarcane plantation combined
amongfossil fuel use, chemical and organic fertilizer utilizationwere
2841.9 kg CO2e ha1 y (Table 3). The largest contribution comes from
fertilizer utilization. Calculated based on 62.5 ton cane ha1 y and
1 ton cane that produces 93.2 kg of sugar, in terms of per ton cane
this was 45.47 kg CO2e, and per kg of sugar this was 0.49 kg CO2e
(Table 3).
Table 3
Summary of greenhouse gas emissions (CO2e) from sugarcane cultivation.
Emission sources Emission
kg CO2e
ha1 y
kg CO2e
ton1 canea
kg CO2e
kg1 sugarb
I. Emissions from production of raw material used in sugarcane plantation
(1) Fossil fuel for farm operation (tillage, irrigation, insecticide, herbicide)
(a) Diesel fuel 77.8 1.24 0.01
(b) Gasoline fuel 22.4 0.36 0.004
(2) Diesel fuel (transportation) 52 0.83 0.009
(3) Synthetic fertilizer production
(a) Nitrogen (N) 365.6 5.85 0.06
(b) Phosphorus (P2O5) 23.6 0.38 0.004
(c) Potassium (K2O) 15 0.24 0.003
(4) Herbicide and insecticide 132 2.11 0.02
II. Emissions from sugarcane plantations
(1) Fossil fuel for farm operation (tillage, irrigation, insecticide, herbicide)
(a) Diesel fuel 429.4 6.87 0.07
(b) Gasoline fuel 53.6 0.86 0.01
(2) Diesel fuel (transportation) 287.2 4.59 0.05
(3) Fertilizer utilization
(a) N2O direct emission
-Synthetic N fertilizer 419.1 6.70 0.07
-Liquid swine manure 7.1 0.11 0.001
-Organic fertilizer (filter cake) 0.1 0.002 0.00002
(b) N2O indirect emission
-Emission from atmospheric
deposition of NOx and NH3
46.2 0.74 0.008
-Emission from leaching and runoff 95.9 1.53 0.02
(c) Urea application 262.3 4.20 0.05
(4) Biomass burning
-CH4 443 7.09 0.08
-N2O 109.5 1.75 0.02
Total 2841.9 45.47 0.49
a Calculate base on 62.5 ton cane yield ha1 (average yield data from
questionnaire).
b Calculated based on 1 ton cane can produce 93.2 kg sugar, the average for 4
sugar mills in eastern Thailand during 2003e2007 production year.
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 3:[สำเนา]
คัดลอก!
และแสดงในแง่ของ nep2o5ek2o ค่อนข้างแตกต่างจาก
ค่อนข้างต่ำปริมาณไนโตรเจน 6e14e12,13e13e21,15e7e8
15e8e8 15e15e15 16e8e8 , , , , 16e16e16 , ที่สูงไนโตรเจน
เนื้อหาของ 20e20e0 21e0e0 21e4e2 21e8e8 , , , , และ 40e0e0
46e0e0 ( ยูเรีย ) ที่ใช้กันอย่างกว้างขวางมากที่สุดคือ 15e15e15 ซึ่ง
ใช้ในอัตรา 19e938 กกฮา  1 Y โดยฟาร์มทั้งหมดตาม
คน ( ตารางที่ 2 )เพียงเศษเสี้ยวเล็กๆ ของเกษตรกรที่ใช้ยูเรีย
( 6.8 % ของทั้งหมด ( ประยุกต์ ) โดยรวมแล้ว อัตราการ 199.0 ไนโตรเจนถูก
 203.6 กก. N ฮา  1 Y ( หมายถึง  ส่วนเบี่ยงเบนมาตรฐานจาก 59 คน

) นอกจากนี้ปุ๋ยเคมี เค้กกรองและลานนา ( สุกร )
มูลยังใช้เป็นปุ๋ยอินทรีย์ สำหรับตัวกรองเค้ก
เกษตรกรเชื่อว่ามันมีสารอาหารสูง แต่ทางโภชนาการ
ค่านิยมที่ไม่รู้จัก การวิเคราะห์ของเรา พบว่าตัวกรอง
เค้กที่มีอยู่ 38.0  0.4% และ 0.36  0.01% ของ C และ N ตามลำดับ
( หมายถึง  ส่วนเบี่ยงเบนมาตรฐาน 5 วัด ) จาก
13 ตัน อัตราการแห้งของฮา  1 y , คาร์บอนใส่
ผ่านการประยุกต์ใช้ 5 ตัน ซี ฮา  1 Y และไนโตรเจนถูก
50 กก. N ฮา  1 Y . นอกจากนี้ , น้ำมูลสุกรทดลองที่
อัตรา 2083.3 ผมฮา  1 Y . ขึ้นอยู่กับเนื้อหาของ n
1000e1300 mg L  1 y , เฉลี่ยอินพุต N ผ่านสุกรใส่ปุ๋ยคอกเฉลี่ย 2.4 กก. N /
1 Y ฮา  ตามการสำรวจ , 90% ของอ้อยใช้เค้ก
ฟาร์มกรองและ 59% ใช้มูลสุกร

ของเหลว ในลักษณะเดียวกันเป็นเชื้อเพลิงฟอสซิล มลพิษจากสารเคมี
fertilizationwere ยังคำนวณแยกต่างหากจากการผลิตและ
ขั้นตอนการใช้ การปล่อยมลพิษในระหว่างการผลิตได้ประมาณ
จากปริมาณของปุ๋ยที่ใช้ในฟาร์มคูณ
ปัจจัยการปล่อยออกมาเฉพาะประเทศไทยประเทศ ( คณะกรรมการเทคนิคคาร์บอนผลิตภัณฑ์ footprinting
แห่งชาติ ( ประเทศไทย ) , 2553 ) โดย
ผล การปล่อยก๊าซเรือนกระจกจากการผลิต คือ N P และ K (
เป็น 365.6 23.6 กก. , และ co2e ฮา  1 Y ( ตารางที่ 3 ) .
การใช้ปุ๋ยไนโตรเจนสามารถส่งผลทั้งทางตรงและทางอ้อม
ก๊าซ N2O จากดิน ในการศึกษานี้ได้ประเมินจากการปล่อยโดยตรง
ไนโตรเจนผ่านปุ๋ยสังเคราะห์ ใส่ปุ๋ยคอก และปุ๋ยอินทรีย์
. บนมืออื่น ๆ , emissionwas ทางอ้อม
ประมาณสำหรับการสะสมบรรยากาศของ NOx และ nh3
และการชะละลาย และของเหลว นอกจากนี้ การปล่อยก๊าซ CO2 โดยตรงจากยูเรีย
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: