1. The development of new types of quantum dots (QDs) has received increasing attention recently, as QDs can enable the fabrication of new structures or devices with extraordinary functions and properties to replace commonlyused semiconductor nanocrystals,which are expensive and contain cytotoxic heavy metal constituents.
2. Among QDs, zero-dimensional graphene quantum dots (GQDs) have been studied on both experimental and theoretical fronts and show marvelous optical properties that are directly associated with quantum confinement and edge effects [1,2].
3. Like carbon based luminescence nanomaterials [3–6], the GQDs present some fascinating characteristics that may not be observed in traditional semiconductor quantum dots, such as low toxicity, excellent solubility, high and stable luminescence, robust chemical inertness, good biocompatibility and a tunable band gap.
4. Therefore, the GQDs have potential for light-emitting, photovoltaic, bioimaging, and a new generation of detection applications [7,8]. Consequently, the development of various chemical methods for controllable synthesis of GQDs has received tremendous attention [9].
5. There are two major strategies for synthesizing GQDs, i.e., top–down and bottom–up methods.
1. The development of new types of quantum dots (QDs) has received increasing attention recently, as QDs can enable the fabrication of new structures or devices with extraordinary functions and properties to replace commonlyused semiconductor nanocrystals,which are expensive and contain cytotoxic heavy metal constituents.
2. Among QDs, zero-dimensional graphene quantum dots (GQDs) have been studied on both experimental and theoretical fronts and show marvelous optical properties that are directly associated with quantum confinement and edge effects [1,2].
3. Like carbon based luminescence nanomaterials [3–6], the GQDs present some fascinating characteristics that may not be observed in traditional semiconductor quantum dots, such as low toxicity, excellent solubility, high and stable luminescence, robust chemical inertness, good biocompatibility and a tunable band gap.
4. Therefore, the GQDs have potential for light-emitting, photovoltaic, bioimaging, and a new generation of detection applications [7,8]. Consequently, the development of various chemical methods for controllable synthesis of GQDs has received tremendous attention [9].
5. There are two major strategies for synthesizing GQDs, i.e., top–down and bottom–up methods.
การแปล กรุณารอสักครู่..
1. The development of new types of quantum dots (QDs) has received increasing attention recently, as QDs can enable the fabrication of new structures or devices with extraordinary functions and properties to replace commonlyused semiconductor nanocrystals,which are expensive and contain cytotoxic heavy metal constituents.
2. Among QDs,ศูนย์มิติ graphene ควอนตัมจุด ( gqds ) ได้รับการศึกษาทั้งในทางทฤษฎีและการทดลองครั้งยิ่งใหญ่ที่แสดงสมบัติทางแสงโดยตรงเกี่ยวข้องกับควอนตัมคอน จึง nement และขอบผล [ 1 , 2 ] .
3 เช่นคาร์บอนจากการ nanomaterials [ 3 – 6 ] , gqds ปัจจุบันบางส่วนที่น่าสนใจ ลักษณะที่อาจไม่พบในควอนตัมสารกึ่งตัวนำแบบดั้งเดิม such as low toxicity, excellent solubility, high and stable luminescence, robust chemical inertness, good biocompatibility and a tunable band gap.
4. Therefore, the GQDs have potential for light-emitting, photovoltaic, bioimaging, and a new generation of detection applications [7,8]. Consequently,การพัฒนาวิธีทางเคมีต่าง ๆควบคุมการสังเคราะห์ของ gqds ได้รับความสนใจอย่างมาก [ 9 ] .
5 มี 2 กลยุทธ์หลักสำหรับการสังเคราะห์ gqds คือด้านบนและด้านล่างขึ้น–ลง–วิธีการ
การแปล กรุณารอสักครู่..