In a scientific sense, a chemical process is a method or means of somehow changing one or more chemicals or chemical compounds. Such a chemical process can occur by itself or be caused by an outside force, and involves a chemical reaction of some sort. In an "engineering" sense, a chemical process is a method intended to be used in manufacturing or on an industrial scale (see Industrial process) to change the composition of chemical(s) or material(s), usually using technology similar or related to that used in chemical plants or the chemical industry.
Neither of these definitions is exact in the sense that one can always tell definitively what is a chemical process and what is not; they are practical definitions. There is also significant overlap in these two definition variations. Because of the inexactness of the definition, chemists and other scientists use the term "chemical process" only in a general sense or in the engineering sense. However, in the "process (engineering)" sense, the term "chemical process" is used extensively. The rest of the article will cover the engineering type of chemical process.
Although this type of chemical process may sometimes involve only one step, often multiple steps, referred to as unit operations, are involved. In a plant, each of the unit operations commonly occur in individual vessels or sections of the plant called units. Often, one or more chemical reactions are involved, but other ways of changing chemical (or material) composition may be used, such as mixing or separation processes. The process steps may be sequential in time or sequential in space along a stream of flowing or moving material; see Chemical plant. For a given amount of a feed (input) material or product (output) material, an expected amount of material can be determined at key steps in the process from empirical data and material balance calculations. These amounts can be scaled up or down to suit the desired capacity or operation of a particular chemical plant built for such a process. More than one chemical plant may use the same chemical process, each plant perhaps at differently scaled capacities. Chemical Processes like Distillation and Crystallization, goes back to Alchemy in Alexandria.
Such chemical processes can be illustrated generally as block flow diagrams or in more detail as process flow diagrams. Block flow diagrams show the units as blocks and the streams flowing between them as connecting lines with arrowheads to show direction of flow.
In addition to chemical plants for producing chemicals, chemical processes with similar technology and equipment are also used in oil refining and other refineries, natural gas processing, polymer and pharmaceutical manufacturing, food processing, and water and wastewater treatment.