The results of this study have potentially important applications in regulating air ventilation in health-care facilities especially during disease outbreaks. It seems that a relatively inactive person has a strong influence on bacteria circulating in an enclosed space. It is well known that ventilation plays a key role in the transmission of disease indoors; the results of this study show that increasing air flow rates from one to three air changes per hour nearly eliminates the detectible human microbial cloud.
Perhaps the most exciting finding of the study was that participants could be identified by their airborne bacterial emissions as well as their contributions to settled particles, which could have applications forensically. The authors acknowledge that a person occupying a room for a short amount of time could go undetected as they would not shed enough bacterial particles to overcome background airborne bacterial concentrations. They also recognize that individuals may not be distinguishable in a crowd of people or in the presence of large amounts of resuspended dust.
The authors state that "Our data make clear that an occupied space is microbially distinct from an unoccupied one, and reveal for the first time that individuals occupying a space can emit their own distinct personal microbial cloud"
It is becoming increasingly apparent that we come into contact with a staggering amount of microbes daily, from our family, our pets, our co-workers and even perfect strangers. With over sevem billion people in the world, each microbially unique, it is plausible that we would each have our own personalized microbial 'fingerprint'.
The results of this study have potentially important applications in regulating air ventilation in health-care facilities especially during disease outbreaks. It seems that a relatively inactive person has a strong influence on bacteria circulating in an enclosed space. It is well known that ventilation plays a key role in the transmission of disease indoors; the results of this study show that increasing air flow rates from one to three air changes per hour nearly eliminates the detectible human microbial cloud.Perhaps the most exciting finding of the study was that participants could be identified by their airborne bacterial emissions as well as their contributions to settled particles, which could have applications forensically. The authors acknowledge that a person occupying a room for a short amount of time could go undetected as they would not shed enough bacterial particles to overcome background airborne bacterial concentrations. They also recognize that individuals may not be distinguishable in a crowd of people or in the presence of large amounts of resuspended dust.The authors state that "Our data make clear that an occupied space is microbially distinct from an unoccupied one, and reveal for the first time that individuals occupying a space can emit their own distinct personal microbial cloud"It is becoming increasingly apparent that we come into contact with a staggering amount of microbes daily, from our family, our pets, our co-workers and even perfect strangers. With over sevem billion people in the world, each microbially unique, it is plausible that we would each have our own personalized microbial 'fingerprint'.
การแปล กรุณารอสักครู่..
