Specimens
The materials used for specimens in this study were bisphenol
A type epoxy composites filled with spherical
silica particles.
The matrix resin was a blend of the diglycidyl ether of
bisphenol A type epoxy resin (Asahi Kasei E-Materials, AER
2603), with methyl-tetrahydro-phthalic anhydride (New
Japan Chemical, RIKACID MH-700) as the curing agent and
2,4,6-tris (dimethyl aminomethyl) phenol (Mitsubishi
Chemical, jER BMI12) as the accelerator. The equivalent
weight of the epoxide resin was 188 g/equivalent and the
acid anhydride equivalent weight of the curing agent was
162 g/equivalent. The stoichiometric-mixture-weight ratio of
the epoxide resin, the curing agent, and the accelerator was
100:86:0.5.
The mixture ratio of the epoxide resin and the curing
agent was changed to consider the interaction between the
silica particles and the network structures in the matrix
resin. In this paper, the changed mixture ratio is hereafter
expressed as the epoxy-equivalent-weight ratio (EEWR)
defined by the epoxide resin weight over the stoichiometric
epoxide resin weight in the mixture. In the experiment, the
EEWR ranged from 1.0 to 3.2 and the accelerator was kept
constant at 0.5, as listed in Table 1. The neat epoxy resins
manufactured for the EEWR over 3.2 were too weak to
measure the viscoelastic properties mentioned below. We
did not use any epoxy-equivalent-weight ratios below 1.0
to manufacture the resin or the composites because unreacted
curing agents might leak out of the cured resins.
Silica particles with a median diameter of 240 nm
(Tatsumori, SO-C1) were used as the filler of the composite.
The volume fraction of the silica particles was 0.2
for every composite. The surfaces of the particles were not
chemically coated.
The silica particles were added to the epoxy resin containing
the curing agent and accelerator. After stirringsufficiently to disperse the particles without agglomeration,
the mixture was stored in a vacuum vessel to remove voids
and then poured into an aluminum mold coated with a
Teflon sheet. The mold was 260 mm long, 5 mm wide, and
120 mm deep. The mixture in the mold was heated for
curing in an oven. The curing procedure was performed in
two steps: first, the mixture was kept at 373 K for 2 h to gel
the matrix resin (pre-curing), and second, the post-curing,
which greatly affects the crosslinking reaction of the resin,
was performed at 403 K for 15 h. The heating rate from
pre-curing to post-curing was kept constant at 72 K h-1
.
Cured epoxy resins without silica particles were also prepared
in the same process as those for the composites.
Hereafter, the cured epoxy resins without the silica particles
are referred to as neat epoxy resins. Both the neat
epoxy resins and the composites were used in the experiment
listed in Table 1.
Densities of the cured materials were measured in
accordance with ASTM standard 792-08. The results are
listed in Table 1. The densities of both the neat epoxy
resins and the composites were confirmed to be independent
of the EEWR
ตัวอย่างวัสดุที่ใช้สำหรับตัวอย่างในการศึกษาคือ บิสฟีนอลเประเภทอีพ็อกซี่คอมโพสิตที่มีทรงกลมอนุภาคซิลิกาเมทริกซ์เรซิน เป็นส่วนผสมของไดไกลซิดิลอีเธอร์ของBisphenol ชนิดอีพอกซีเรซิน ( อาซาฮีคาเซอิ e-materials Aer ,2603 ) กับเมทิล tetrahydro พทาลิกแอนไฮไดรด์ ( ใหม่เคมีญี่ปุ่น rikacid mh-700 ) และตัวแทนการบ่ม2,4,6-tris ( Dimethyl aminomethyl ) ฟีนอล ( มิตซูบิชิเคมี , เจอร์ bmi12 ) เป็น คันเร่ง เทียบเท่าน้ำหนักของวอมแวม เรซิน เป็น 188 กรัม / เทียบเท่า และกรดแอนเทียบเท่าน้ำหนักของตัวแทนการบ่ม162 กรัม / เทียบเท่า อัตราส่วนผสมที่อัตราส่วนโดยน้ำหนักของที่วอมแวม เรซิน บ่มตัวแทนและเร่งคือ100:86:0.5 .ผสมอัตราส่วนของวอมแวม เรซิน และการบ่มเจ้าหน้าที่ไปพิจารณาระหว่างอนุภาคซิลิกาและเครือข่ายโครงสร้างในเมทริกซ์เรซิน ในกระดาษนี้ เปลี่ยนไปผสมอัตราส่วนแสดงเป็นอีพ็อกซี่เทียบเท่าอัตราส่วนโดยน้ำหนัก ( eewr )ที่กำหนดโดยวอมแวมเรซินน้ำหนักมากกว่า stoichiometricวอมแวมเรซินน้ำหนักในส่วนผสม ในการทดลองeewr ตั้งแต่ 1.0 ถึง 3.2 และคันเร่งถูกเก็บไว้คงที่ ที่ 0.5 , ตามที่ระบุไว้ในตารางที่ 1 และอีพ็อกซีเรซินเรียบร้อยที่ผลิตขึ้นเพื่อ eewr กว่า 3.2 อ่อนแอเกินไปวัดได้ คุณสมบัติที่กล่าวถึงด้านล่าง เราไม่ใช้อีพ็อกซี่เทียบเท่าน้ำหนักอัตราส่วนด้านล่างสำหรับผลิตเรซิน คอมโพสิต เพราะเข้าสู่หรือการบ่มตัวแทนอาจจะรั่วไหลออกมาจากหายเร .ซิลิกาที่มีเส้นผ่านศูนย์กลางเฉลี่ย 240 nm( ทัสสุโมริ so-c1 , ) ที่ใช้เป็นสารตัวเติมในคอมโพสิตส่วนปริมาณซิลิกาเท่ากับ 0.2สำหรับทุกคอมโพสิต พื้นผิวของอนุภาคไม่ได้เคลือบเคมี .ซิลิกาที่ถูกเพิ่มไปยังอีพอกซีเรซินที่มีและตัวแทนการบ่มเร่ง หลังจากการสลายอนุภาค โดยการ stirringsufficiently ,ส่วนผสมจะถูกเก็บไว้ในภาชนะสุญญากาศเพื่อลบช่องว่างแล้วเทลงในแม่พิมพ์อลูมิเนียมเคลือบด้วยเทปล่อนแผ่น แม่พิมพ์ยาว 260 มิลลิเมตร กว้าง 5 มิลลิเมตร และลึก 120 มิลลิเมตร ส่วนผสมในแม่พิมพ์ให้ความร้อนสำหรับการบ่มในเตาอบ ขั้นตอนการบ่มในการปฏิบัติ2 ขั้นตอนแรก ส่วนผสมจะถูกเก็บไว้ที่คุณ K 2 ชั่วโมงกับเจลเมทริกซ์เรซิน ( ก่อนการบ่ม และ สอง การโพสต์การรักษา ,ซึ่งส่งผลกระทบต่อปฏิกิริยาการเชื่อมขวางของเรซิ่นดำเนินการโดย 403 K 15 ชั่วโมง อัตราความร้อนจากก่อนการโพสต์การแข็งตัวคงที่ที่ 72 K ส่วน.รักษา epoxy resins ไม่มีอนุภาคซิลิกายังเตรียมในกระบวนการเดียวกันสำหรับคอมโพสิตต่อจากนี้ , รักษา epoxy resins โดยอนุภาคซิลิกาจะเรียกว่าเรียบร้อยอีพ็อกซี่เรซิ่น . ทั้งเรียบร้อยอีพ็อกซีเรซิน และคอมที่ใช้ในการทดลองที่ระบุไว้ในตารางที่ 1ความหนาแน่นของวัสดุที่สามารถทำการวัดตามมาตรฐาน ASTM 792-08 . ผลคือที่ระบุไว้ในตารางที่ 1 หนาแน่นทั้งอีพ็อกซี่เรียบร้อยและเรซินคอมยืนยันที่จะเป็นอิสระของ eewr
การแปล กรุณารอสักครู่..
