Immune-suppression has been considered to be an anchor treatment, since perivascular infiltrate of inflammatory cells and activation of the immune system are key features of scleroderma [139]. Excessive accumulation of extracellular matrix (ECM) is the hallmark of scleroderma and results in inflammation [140,141]. Inflammation can be initiated and propagated by ECM disruption in all tissues. Molecules of ECM, newly liberated by injury or inflammation, include hyaluronan fragments, tenascins and sulfated proteoglycans. These act as ‘damage-associated molecular patterns’ or ‘alarmins’ that trigger and subsequently amplify inflammation [138]. Curcumin possess the effects of the anti-fibrosis, which is characterized by the reduction of collagen deposition, ECM production in pulmonary fibrosis and keloid formation [142]. The two PKC isoforms (δ and ε) play an important role in scleroderma. Wermuth et al., suggested that curcumin administration could down-regulate the levels of PKC δ that cause ECM excessive accumulation and fibrosis in vivo and in vitro [143]. There is abnormal regulation of inflammatory cytokines and NF-κB involved in angiogenesis and fibrosis in scleroderma [144]. Curcumin can induce apoptosis in scleroderma lung fibroblasts (SLF), by inducting GST P1 and HO-1 which involve the inhibition of protein kinase C epsilon (PKCε). Thus PKC epsilon and phase 2 detoxification enzymes provide protection against curcumin-induced apoptosis in SLF. Song observed that curcumin effectively inhibited the down-regulation of TGF-β- induced factor (TGIF) to modulate TGF-β cascade [145]. Another study suggested that curcumin may have therapeutic effect in the treatment of scleroderma for it could protect rats against lung fibrosis induced by a large number of agents. In conclusion, curcumin has a potentially function in the treatment of scleroderma, but plentiful researches are also needed.