We evaluated the effects of intra-hippocampal transplantation of human umbilical mesenchymal stem
cells (HUMSCs) on pilocarpine-treated rats. Sprague–Dawley rats were divided into the following three
groups: (1) a normal group of rats receiving only PBS, (2) a status epilepticus (SE) group of rats with
pilocarpine-induced SE and PBS injected into the hippocampi, and (3) a SE + HUMSC group of SE rats with
HUMSC transplantation. Spontaneous recurrent motor seizures (SRMS) were monitored using simultaneous
video and electroencephalographic recordings at two to four weeks after SE induction. The results
showed that the number of SRMS within two to four weeks after SE was significantly decreased in SE
+ HUMSCs rats compared with SE rats. All of the rats were sacrificed on Day 29 after SE. Hippocampal
morphology and volume were evaluated using Nissl staining and magnetic resonance imaging. The
results showed that the volume of the dorsal hippocampus was smaller in SE rats compared with normal
and SE + HUMSCs rats. The pyramidal neuron loss in CA1 and CA3 regions was more severe in the SE rats
than in normal and SE + HUMSCs rats. No significant differences were found in the hippocampal neuronal
loss or in the number of dentate GABAergic neurons between normal and SE + HUMSCs rats. Compared
with the SE rats, the SE + HUMSCs rats exhibited a suppression of astrocyte activity and aberrant mossy
fiber sprouting. Implanted HUMSCs survived in the hippocampus and released cytokines, including FGF-
6, amphiregulin, glucocorticoid-induced tumor necrosis factors receptor (GITR), MIP-3b, and osteoprotegerin.
In an in vitro study, exposure of cortical neurons to glutamate showed a significant decrease in cell
viability, which was preventable by co-culturing with HUMSCs. Above all, the expression of human osteoprotegerin
and amphiregulin were significantly increased in the media of the co-culture of neurons and
HUMSCs. Our results demonstrate the therapeutic benefits of HUMSC transplantation for the development
of epilepsy, which are likely due to the ability of the cells to produce neuroprotective and antiinflammatory
cytokines. Thus, HUMSC transplantation may be an effective therapy in the future.
2015 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY licens