Gravitropism is a complex multistep process that redirects the growth of roots and various above-ground organs in response to changes in the direction of the gravity vector. The anatomy and morphology of these graviresponding organs indicates a certain spatial separation between the sensing region and the responding one, a situation that strongly suggests the requirement of phytohormones as mediators to coordinate the process. The Cholodny-Went hypothesis suggested auxin as the main mediator of gravitropism. So far, ample evidence has been gathered with regard to auxin asymmetrical detection, polar and lateral transport involving influx and efflux carriers, response signaling pathway, and possible modes of action in differential cell elongation, supports its major role in gravitropism at least in roots. However, it is becoming clear that the participation of other hormones, acting in concert with auxin, is necessary as well. Of particular importance is the role of ethylene in shoot gravitropism, possibly associated with the modulation of auxin transport or sensitivity, and the key role implicated for cytokinin as the putative root cap inhibitor that controls early root gravitropism. Therefore, the major advances in the understanding of transport and signaling of auxin, ethylene, and cytokinin may shed light on the possibly tight and complicated interactions between them in gravitropism. Not much convincing evidence has been accumulated regarding the participation of other phytohormones, such as gibberellins, abscisic acid, brassinosteroids, jasmonates, and salicylic acid, in gravitropism. However, the emerging concept of cooperative hormone action opens new possibilities for a better understanding of the complex interactions of all phytohormones and their possible synergistic effects and involvement in the gravitropic bending process.