Regulatory T cells (Tregs) are critical to the maintenance of immune cell homeostasis as evidenced by the catastrophic consequences of genetic or physical ablation of the Treg population. Specifically, Treg cells maintain order in the immune system by enforcing a dominant negative regulation on other immune cells. Broadly classified into natural or adaptive (induced) Tregs; natural Tregs are CD4+CD25+ T-cells which develop, and emigrate from the thymus to perform their key role in immune homeostasis. Adaptive Tregs are non-regulatory CD4+ T-cells which acquire CD25 (IL-2R alpha) expression outside of the thymus, and are typically induced by inflammation and disease processes, such as autoimmunity and cancer.
Precise understanding of the immunosuppressive mechanism of T regulatory cells remains elusive, although there is increasing evidence that Tregs manifest their function through a myriad of mechanisms that include the secretion of immunosuppressive soluble factors such as IL-9, IL-10 and TGF beta, cell contact mediated regulation via the high affinity TCR and other costimulatory molecules such as CTLA-4, GITR, and cytolytic activity. Understanding the mechanisms by which Treg cells exert their influence is an area of intense research with broad implications for the development of therapeutic strategies for many disease processes including cancer, diabetes, and Immune mediated diseases.