Biomarkers also indicate the path that oil took as it moved toward the surface. This information can help geologists pinpoint where to drill the next well.
As a kid, Zumberge first learned about science from his dad, who was a geology professor at the University of Michigan in Ann Arbor. Sometimes John’s father took the boy and his three siblings on field trips with the college students.
Later, when Zumberge went to college, he discovered that geochemistry classes combined two of his favorite hobbies: hiking and laboratory chemistry.
Natural oil and gas aren’t really made up of old dinosaur bones, as some of the TV ads might suggest. In fact, Zumberge explains, these fuels come from dead algae and bacteria that lived millions of years before dinosaurs existed.
Remains of those ancient algae, bacteria or other living things mixed with river or lake sediments. Eventually, those sediments were buried and compressed by the materials atop them. This compression created heat and pressure that over millions of years transformed the biological remains into oil and gas.
For years, oil companies have been drilling deep underground in search of big lakes of oil and gas. Today many companies are turning to geochemists for help in a new form of fuel exploration known as fracking, Zumberge says. In fracking, instead of drilling straight down, explorers drill horizontally through the earth and into rock. Then they break apart the rock to release the fuel underneath, so it can be pumped up to the surface through oil and gas wells.