How does one decide which sigmoidal function to use? In the literature, selection is
justified on either neurobiological grounds or mathematical grounds (Williams, 1986) (Jordan,
1986), on pragmatic grounds (Hecht-Nielsen, 1990) (Wasserman, 1989), or, most commonly, on
intuitive grounds. Most of the intuition comes from rather vague arguments related to its
squashing capabilities and to the fact that the gain (slope) through the axis can be easily manipu-
lated. It is generally believed that “the exact details of the sigmoid are not critical in a back-
propagation network.’’ (p.19, Caudill, 1990). While this is true for the performance of an
already-trained network, there are important differences that can impact training dramatically,
Therefore, attention should focus on choosing an activation function that exhibits the best pro-
perties for training. Our arguments come from this perspective.
อย่างไรหนึ่งตัดสินใจที่ sigmoidal ที่จะใช้ฟังก์ชั่น? ในวรรณคดีเลือกเป็น
ธรรมทั้งบริเวณ neurobiological หรือบริเวณทางคณิตศาสตร์ (วิลเลียมส์, 1986) (จอร์แดน,
1986) ในบริเวณปฏิบัติ (ชต์-นีลเซ่น, 1990) (Wasserman, 1989) หรือมากที่สุดใน
บริเวณที่ใช้งานง่าย ส่วนใหญ่ของสัญชาตญาณที่มาจากการขัดแย้งค่อนข้างคลุมเครือที่เกี่ยวข้องกับของ
ความสามารถในการกดทับและความจริงที่ว่ากำไร (ลาด) ผ่านแกนได้อย่างง่ายดาย manipu-
lated เป็นที่เชื่อกันโดยทั่วไปว่า "รายละเอียดที่แน่นอนของ sigmoid ไม่ได้สำคัญในภูมิหลัง
เครือข่ายการขยายพันธุ์. '' (หน้า 19, Caudill, 1990) ขณะนี้เป็นจริงสำหรับประสิทธิภาพการทำงานของ
เครือข่ายอยู่แล้วผ่านการฝึกอบรมมีความแตกต่างที่สำคัญที่สามารถส่งผลกระทบต่อการฝึกอบรมอย่างมาก
ดังนั้นจึงควรมุ่งเน้นความสนใจในการเลือกฟังก์ชั่นการเปิดใช้ที่แสดงที่ดีที่สุดโปร
perties สำหรับการฝึกอบรม ข้อโต้แย้งของเรามาจากมุมมองนี้
การแปล กรุณารอสักครู่..
