Generalized Regulation of Protein Synthesis by Iron in Erythroid Cells
In addition to the regulation of the synthesis of individual proteins by iron, erythroid cells also contain a mechanism for a generalized adaptive response to iron deficiency. This response is affected by the heme-regulated inhibitor kinase (HRI) belonging to a class of kinases activated by cellular stress, including nutrient deprivation, viral infection, and endoplasmic reticulum stress (Chen 2007). During iron deficiency as heme concentrations drop, heme dissociates from HRI, causing it to undergo specific autophosphorylation to become a catalytically active kinase targeting the α subunit of eukaryotic translational initiation factor 2 (eIF2α). Activated HRI inhibits translational initiation by phoshorylating eIF2α. Not all protein synthesis is inhibited however, as activated HRI may promote the synthesis of transcription factors that are protective during iron-deficient erythropoiesis (Liu et al. 2008). A priori, it is not obvious how iron deficiency results in the production of smaller, less-hemoglobinized erythrocytes rather than fewer normally sized and hemoglobinized cells. Studies with HRI-deficient mice showed that HRI protects erythroid precursors from apoptosis induced by excessive production of globin chains and contributes to the microcytosis and hypochromia seen in iron deficiency, erythropoietic protoporphyria, and β-thalassemia.
Iron and Hypoxia Sensing
The hypoxia-sensing pathway may also contribute to cellular iron homeostasis. Prolyl and asparaginyl hydroxylases, which inactivate the HIF transcription factors, are not only sensitive to oxygen tension but also to iron concentrations because they use iron as a catalytic cofactor. In support of the potential role of HIF in iron regulation, tissue-specific deletion of HIF2α in mouse enterocytes decreased intestinal iron absorption as well as the expression of DMT1 in enterocytes (Mastrogiannaki et al. 2009). HIF2α bound to the DMT1 promoter and transactivated it. The broader physiologic function of HIF in cellular iron homeostasis still remains to be established and may vary in different tissues depending on oxygen tension and other factors.
Previous SectionNext Section
SYSTEMIC IRON HOMEOSTASIS
The Central Role of Hepcidin
Systemic iron homeostasis encompasses the regulatory circuitry that controls the absorption of dietary iron, the concentration of iron in extracellular fluid and blood plasma, and the release of iron from macrophages involved in iron recycling and from iron-storing hepatocytes. It now appears that there is a single systemic regulator of iron, the hepatic peptide hormone hepcidin. The hormone inhibits iron delivery to plasma and extracellular fluid thereby controlling the concentration of iron in plasma. Hepcidin inhibits the transfer of dietary iron from duodenal enterocytes to plasma, the release of recycled iron from macrophages to plasma, and the release of stored iron from hepatocytes (Fig. 2). Fetal hepcidin inhibits the transfer of maternal iron across the placenta to the fetal circulation. At the molecular level, hepcidin acts by binding to its receptor, ferroportin, and causing its endocytosis and proteolysis, which results in decreased iron release from cells to plasma and extracellular fluid. Ferroportin is found at very low concentrations in most cell types but much higher amounts in professional iron-transporting tissues, including the duodenal enterocytes and splenic macrophages. Intermediate concentrations of ferroportin are detectable in hepatocytes.
View larger version:
In this page
In a new window
Download as PowerPoint Slide
Figure 2.
Iron homeostasis. Through membrane ferroportin (Fpn), iron flows into plasma (pale blue arrows) from duodenal enterocytes, iron-storing hepatocytes, and iron-recycling macrophages predominantly in the spleen. Iron-transferrin (Fe-Tf) is mostly delivered to the marrow (pale blue arrow) where iron is incorporated into erythrocyte hemoglobin (red). When the erythrocytes live out their lifespan (normally 120 d in humans), their hemoglobin and heme are degraded in the macrophages, mostly in the spleen, and iron is returned into the plasma iron pool. Hepatocytes secrete hepcidin under the control of stimulatory signals that reflect liver iron stores and plasma iron concentrations (blue), inhibitory signals reflecting erythropoietic activity (red), and inflammatory cytokines (green). Hepcidin causes the degradation of Fpn and thereby inhibits iron delivery to plasma and the erythropoietic bone marrow.
การตั้งค่าทั่วไปข้อบังคับของการสังเคราะห์โปรตีนโดยเหล็กในเซลล์ Erythroidนอกจากการควบคุมการสังเคราะห์โปรตีนแต่ละโดยเหล็ก erythroid เซลล์ประกอบด้วยกลไกการตอบสนองเหมาะสมเมจแบบทั่วไปการขาดเหล็กด้วย ผลตอบรับนี้เป็นผลจาก kinase heme ควบคุมผล (HRI) ของคลาสของ kinases เรียกใช้โทรศัพท์มือถือกลายเป็นความเครียด ภาวะขาดธาตุอาหาร ติดเชื้อไวรัส และความเครียดลัม endoplasmic (เฉิน 2007) ระหว่างการขาดเหล็กเป็น heme หล่นความเข้มข้น heme dissociates จาก HRI ก่อให้เกิดการรับ autophosphorylation เฉพาะเป็น kinase catalytically ใช้งานที่กำหนดเป้าหมายย่อยด้วยกองทัพของปัจจัยเริ่มต้น translational eukaryotic 2 (eIF2α) เปิด HRI ยับยั้ง translational เริ่มต้น โดย phoshorylating eIF2α การสังเคราะห์โปรตีนทั้งหมดไม่ถูกห้ามอย่างไรก็ตาม เป็น HRI เปิดอาจส่งเสริมการสังเคราะห์ปัจจัย transcription ที่ป้องกันระหว่างเหล็กไม่ erythropoiesis (หลิว et al. 2008) มี priori มันไม่ได้ชัดเจนว่าเหล็กขาดผลผลิตเล็ก น้อย hemoglobinized erythrocytes มากกว่าน้อยขนาดปกติ และ hemoglobinized เซลล์ การศึกษากับหนู HRI ไม่พบ HRI ป้องกัน erythroid precursors จากเกิดจากการผลิตมากเกินไปของโซ่ globin apoptosis และสนับสนุน microcytosis และ hypochromia เห็นเหล็กขาด erythropoietic protoporphyria และβ-ทาลัสซีเมีย Iron and Hypoxia SensingThe hypoxia-sensing pathway may also contribute to cellular iron homeostasis. Prolyl and asparaginyl hydroxylases, which inactivate the HIF transcription factors, are not only sensitive to oxygen tension but also to iron concentrations because they use iron as a catalytic cofactor. In support of the potential role of HIF in iron regulation, tissue-specific deletion of HIF2α in mouse enterocytes decreased intestinal iron absorption as well as the expression of DMT1 in enterocytes (Mastrogiannaki et al. 2009). HIF2α bound to the DMT1 promoter and transactivated it. The broader physiologic function of HIF in cellular iron homeostasis still remains to be established and may vary in different tissues depending on oxygen tension and other factors. Previous SectionNext SectionSYSTEMIC IRON HOMEOSTASISThe Central Role of Hepcidinภาวะธำรงดุลระบบเหล็กครอบคลุมวงจรการบังคับที่ควบคุมการดูดซึมของอาหารเหล็ก ความเข้มข้นของเหล็กใน extracellular fluid และเลือด และปล่อยเหล็ก จากบังเอิญเกี่ยวข้องในการรีไซเคิลเหล็ก และเหล็กเก็บ hepatocytes ขณะนี้ปรากฏว่า มีการควบคุมระบบเดียวของเหล็ก hepcidin ฮอร์โมนเพปไทด์ที่ตับ ฮอร์โมนยับยั้งการส่งเหล็กพลาสม่าและ extracellular fluid จึงควบคุมความเข้มข้นของเหล็กในพลาสมา Hepcidin ยับยั้งการโอนย้ายของเหล็กอาหารจาก duodenal enterocytes พลาสมา การปล่อยเหล็กรีไซเคิลจากบังเอิญให้พลาสมา และปล่อยเหล็กเก็บจาก hepatocytes (Fig. 2) Hepcidin ครรภ์ยับยั้งการโอนย้ายของแม่เหล็กผ่านเข้าสู่รกเพื่อหมุนเวียนและทารกในครรภ์ ในระดับโมเลกุล hepcidin กระทำ โดยผูกกับตัวรับของ ferroportin และเกิดการ endocytosis และ proteolysis ผลที่ลดลงเหล็กปล่อยจากเซลล์พลาสมาและ extracellular fluid Ferroportin ตั้งอยู่ที่ความเข้มข้นที่ต่ำมากในชนิดเซลล์ส่วนใหญ่แต่ยอดเงินที่สูงในระดับมืออาชีพขนส่งเหล็กเนื้อเยื่อ duodenal enterocytes และบังเอิญ splenic ความเข้มข้นระดับกลางของ ferroportin จะตรวจใน hepatocytes ดูรูป: ในหน้านี้ ในหน้าต่างใหม่ ดาวน์โหลดเป็นภาพนิ่ง PowerPointรูปที่ 2 ภาวะธำรงดุลของเหล็ก ผ่านเมมเบรน ferroportin (Fpn), เหล็กไหลเป็นพลาสม่า (ลูกศรสีฟ้าอ่อน) จาก duodenal enterocytes, hepatocytes เก็บเหล็ก และรีไซเคิลเหล็กบังเอิญในม้ามเป็นการ เหล็ก-transferrin (Fe-Tf) เป็นส่วนใหญ่ส่งไปไข (ลูกศรสีน้ำเงินซีด) ที่เหล็กจะรวมอยู่ในฮีโมโกลบินของเม็ดเลือดแดง (สีแดง) เมื่อ erythrocytes อาศัยอยู่ออกจากอายุของพวกเขา (ปกติ 120 d ในมนุษย์), มีการเสื่อมโทรมของฮีโมโกลบินและ heme ในบังเอิญ ส่วนใหญ่ในม้าม และเหล็กจะถูกส่งกลับเป็นประเภทเหล็กพลาสม่า Hepatocytes หลั่ง hepcidin ภายใต้การควบคุมของสัญญาณ stimulatory ที่แสดงถึงร้านค้าตับเหล็กและพลาสม่าเหล็กความเข้มข้น (สีน้ำเงิน), ลิปกลอสไขสัญญาณสะท้อนกิจกรรม erythropoietic (สีแดง), cytokines อักเสบ (สีเขียว) Hepcidin ทำให้เกิดการสลายตัวของ Fpn และยับยั้งจึงส่งเหล็กพลาสม่าและไขกระดูก erythropoietic
การแปล กรุณารอสักครู่..
