Deviations of the cosmic microwave background (CMB) frequency spectrum from a pure blackbody tell an exciting story about the thermal history of our Universe. In this paper, we illustrate how well future CMB measurements might decipher this tale, envisioning a PIXIElike spectrometer, which could improve the distortion constraints obtained with COBE/FIRAS some 20 years ago by at least three orders of magnitude. This opens a large discovery space, offering deep insights to particle and early-universe physics, opportunities that no longer should be left unexplored. Specifically, we consider scenarios with annihilating and decaying relic particles, as well as signatures from the dissipation of primordial small-scale power. PIXIE can potentially rule out different early-universe scenarios and moreover will allow unambiguous detections in many of the considered cases, as we demonstrate here. We also discuss slightly more futuristic experiments, with several times improved sensitivities, to highlight the large potential of this new window to the pre-recombination universe. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.