Moreover, several studies have shown that long-chain n-3 PUFAs can decrease the expressions of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 on the surface of endothelial cells [28] and monocytes [29]. Therefore, n-3 PUFA-induced decreases in adhesion molecule expression on endothelial cells and/or the monocyte/macrophage itself, might reduce migration of monocytes/macrophages into the plaque [30], [31]. Further, chylomicron remnant-like particles enriched in n-3 PUFA are taken up more slowly by macrophages than those enriched in saturated or monounsaturated fatty acids, which might also be involved in attenuation of plaque formation [32], and it has been shown that administration of n-3 PUFA reduced the matrix metalloproteinase-7, −9 and −12 expressions [33]. These gene products are proteases capable of degrading extracellular matrix proteins, consequently leading to plaque rupture [33]. Accordingly, reduced expression of matrix metalloproteinases by n-3 PUFAs may also contribute to plaque instability, leading to suppression of ACS.