Shelf-life enhancement of green bell pepper
(Capsicum annuum L.) under active modified
atmosphere storage
abstract
The effect of modified atmosphere packaging (MAP) along with moisture absorbent was
assessed for maintaining quality attributes and extending shelf life of green bell pepper(Capsicum annuum L.) in bulk packages. Under active packaging the quality of capsicum were based on MAP using permeable polymeric films and sachets of silica gel crystals as moisture absorbents. Pre-designed polypropylene film (38 mm) packages were used for storage study under MAP at 8 1 8C temperature. The in-pack O2 and CO2 composition and respiration rate in the package headspace was monitored during storage in all the treatments. A modified atmosphere of 4.5% O2, 7.8% CO2 and 4.7% O2, 7.5% CO2 were achieved in the MA packages with and without moisture absorbent, respectively. The active packaging significantly reduced the respiration rate of fruit in the package. These packaged fruits were compared with non-packaged samples, which served as control stored at both ambient conditions (CS) and control at refrigerated temperature (CR). The quality of capsicums was assessed by physiological weight loss, color (L*, h* and C*) values, firmness, ascorbic acid,decay and marketability. The shelf life of bell pepper was extended to 49 days in active packages, 42 days with MA packages, as compared to 21 days with CR packages and 7 days with CS. Above all, by placing silica crystals sachets in the head space with moisture absorbing ability, could further extend the shelf life of capsicum 7 days in addition tomodified atmosphere packaging alone with 97% fruit marketability.
Introduction
Green bell pepper (Capsicum annuum L.) is an annual herbaceous vegetable crop which belongs to the family Solanaceae. It is one of the most popular and high valued crops worldwide and specially grown in tropical and subtropical parts of the world (Lim, Kang, Cho, Gross, & Woolf, 2007), and is commonly known as capsicum (Mahadu & Ranganna, 2010). It is produced throughout the world for fresh market consumption. Its consumption is growing popularity mainly due to its availability in wide variety of colors, shapes and sizes and its characteristics flavor (Couey, 1989; Frank, Nelson, Simonne,Behe, & Simonne, 2001; Lucier and Lin, 2001). Pepper is rich in vitamins, especially A and C, and is low in calories (Howard,Smith, Wangner, Villalion, & Burns, 1994).
Bell pepper is a highly perishable vegetable and needs appropriate handling and adequate care to maintain shelf-life and quality. Alleviation of water stress is the main factor extending postharvest life of bell pepper sealed in plastic film
(Ben-Yehoshua, Shapiro, Chen, & Lurie, 1983; Lurie, Shapiro, & Ben-Yehoshua, 1986; Pandey and Goswami, 2012). However,excessive relative humidity (RH) and consequent water
condensation may increase the risk of fruit decay (Polderdijk,Boerrigter, Wilkinson, Meijer, & Janssens, 1993). The storage life of capsicum significantly reduces if the control of moisture levels within the package is inadequate. The development of elevated relative humidity inside a package due to respiration of products or use of materials having low permeability to water vapor can cause condensation, which can then lead to
reduced quality and safety of the produce due to microbialproliferation (Scully & Horsham, 2006).
The storage life of pepper fruit is limited by pathological deterioration (Ceponis, Cappellini, & Lightner, 1987), rapid water loss during prolonged storage (Diaz-Perez, Muy-Rangel,& Mascorro, 2007), and susceptibility to chilling injury (Paull,1990). The most common decay microorganisms are Botrytis(gray mold), Alternaria, and soft rots of fungal and bacterial origin. Botrytis can grow even at the recommended pepper storage temperatures. High levels of CO2 (> 10%) can control Botrytis, but it may damages peppers. The presence of Alternaria black rot on the stem end is a symptom of chilling
injury. Bacterial soft rot is caused by several bacteria which attack damaged tissue. Soft rots can occur on washed or hydro-cooled peppers, where water sanitation was inadequate.A RH of 60–70% is desirable (Gonzalez-Aguilar & Tiznado, 1993; Wang, 1977).
Peppers are subject to chilling injury when stored below 7 8C and to accelerated ripening and bacterial soft rot when stored above 13 8C. Storage at 5 8C reduces water loss and ripening, but after 2 weeks chilling injury will appear and is associated with severe pitting, weight loss, calyx darkening and decay development (Lim et al., 2007; Mercado, Quesada,Valpuerta, Reid, & Cantwell, 1995). Some pepper cultivars can be sensitive to chilling if stored at 7 8C (45 8F), so a good storage temperature range should be 7–13 8C (Gonzalez-Aguilar, 2004).
Modified atmosphere packaging (MAP) along with low temperature storage extends the shelf life of fresh produce packaged in polymeric films through interaction of the natural process of respiration of produce with the restricted gas exchange across the package. Peppers derive a slight benefit from CA storage (Brackett, 1990; Rodov, Ben-Yehoshua, Fierman,& Fang, 1995; Saltveit, 1997). Low O2 atmospheres (2–5%for bell and 3–5% for chili) retard ripening and respiration during transit and storage, and have a slight benefit on quality.At 10 8C, high CO2 (>5%) can cause calyx discoloration, skin
pitting, discoloration and softening in both bell and chili peppers. A 3% O2 + 5% CO2 atmosphere is more beneficial for red than green peppers stored at 5–10 8C for 3–4 weeks. Before processing, chili peppers can be stored under 3–5% O2 + 15–20% CO2 for up to 3 weeks at 5 8C (41 8F) without appreciable chilling injury or quality loss. Water-loss from fresh produce can occur as a result of evaporation from the product followed
by permeation through the package material when the package material does not provide an adequate water-vapor barrier (Kader, Zagory, & Kerbel, 1989; Meir, Rozenberger, &Aharon, 1993). Janssens (1993) recommended 90–95% relative humidity at 8 8C for an optimal balance between decay and dehydration for container transportation of bell pepper in
controlled atmosphere.
A possible solution to control humidity would be to use desiccants. Soaking up moisture by using various absorbers or desiccants is very effective in maintaining food quality and extending shelf life by inhibiting microbial growth and moisture related degradation of texture and flavor (Rodrigues & Han, 2003; Rooney, 2005). Several researchers have studied the use of desiccants but most of these were based on a trialand-error approach (Mahajan, Rodrigues, Motel, & Leonhard,2008). Various agents such as sorbitol, xylitol, NaCl, KCl, CaCl2 and silica gel have been used to control in-package relative humidity for different fresh fruits and vegetables (Anantheswaran,
Beelman, & Roy, 1996; Ben-Yehoshua, Rodov, Fishman,& Peretz, 1998; Evelo and Horst, 1996; Rodov et al., 1995; Roy,Anantheswaran, & Beelman, 1995; Shirazi & Cameron, 1992;
Song, Lee, & Yam, 2001; Villaescusa & Gil, 2003). Ben-Yehoshua et al. (1983) used 5 g of CaCl2 per fruit to control relative humidity between 80% and 88% in packages containing bell pepper, whereas (Chinnan and Yang, 1989) used CaCl2 in tomato packages.
Probably the best-known internal package moisture absor-bers are conventional silica gels, which can absorb up to 50% of their own weight in water (De Jong et al., 2005). The use of moisture absorber sachets using silica gel/crystal is a common practice (Rooney, 1995). This approach allows food packers or even householders to decrease the water condensation on the surface of foods by reducing in-pack RH. This can be done by
placing one or more moisture absorbents between two layers of water permeable plastic or in headspace in the form of sachets(Labuza & Breene, 1989; Rooney, 1995). Moisture absorbents protect sensitive products against water and humidity. They absorb moisture that enters or remains in a package. Silica gels are useful to maintain dry conditions within packages of dry foods, down to below 0.2 water activity (Rooney, 1995).Moisture-scavenging systems based on desiccation are evolving to control the moisture by maintaining a specific relative humidity inside the package by absorbing or releasing the moisture (Hutton, 2003). In the present investigations, the post-harvest shelf life and quality indices of mature green bell pepper was evaluated under modified atmosphere packaging with sachets of silica crystal as moisture absorbent.
2. Materials and methods
2.1. Fruit material
Bell pepper (cv. Swarna) fruits of uniform size, without defects or diseases were hand-picked at their commercial maturity(firm and bright green) during the month of June from PFDC farm of Central Institute of Agricultural Engineering, Bhopal,India and transferred to packaging laboratory immediately.They were visually inspected for freedom from defects and blemishes and non-uniform, damaged, poor quality peppers were removed. Peppers were disinfected with sodium hypochlorite(100 ppm) solution in water at room temperature(25 8C) for 5 min. The washed fruits were air-dried at ambient temperature for 30 min to remove surface moisture before the experiment began. The adopted hygiene rules and low storage temperatures are consisted with the food safety regulations
(Gil, Allende, & Selma, 2011; Gonzale´z-Aguilar, Ayala-Zavala,Ruiz-Cruz, Acedo-Fe´ lix, & Diaz-Cinco, 2004).
เพิ่มอายุการเก็บรักษาของพริกหยวกสีเขียว(พริกหวาน annuum L.) ภายใต้การใช้งานปรับเปลี่ยนเก็บบรรยากาศบทคัดย่อผลของการปรับเปลี่ยนบรรยากาศ (MAP) บรรจุภัณฑ์พร้อมดูดซับความชื้นได้ประเมินคุณลักษณะคุณภาพรักษาการและยืดอายุการเก็บรักษาสีเขียวพริกหยวก (พริกหวาน annuum L.) ในแพคเกจจำนวนมาก ภายใต้บรรจุภัณฑ์ที่ใช้ คุณภาพของพริกหวานได้ตามแผนที่ที่ใช้ชนิดฟิล์ม permeable sachets ของผลึกซิลิก้าเจลเป็นความชื้น absorbents แพคเกจล่วงหน้าออกฟิล์ม polypropylene (38 มิลลิเมตร) ใช้สำหรับเก็บข้อมูลศึกษาภายใต้แผนที่ 8 1 8C อุณหภูมิ ในชุด O2 และ CO2 ส่วนประกอบและการหายใจอัตราใน headspace แพคเกจถูกตรวจสอบระหว่างการเก็บรักษาในการรักษา บรรยากาศปรับเปลี่ยน 4.5% O2, 7.8% CO2 และ 4.7% O2, 7.5% CO2 ได้สำเร็จในแพคเกจ MA มี และไม่ มีความชื้นที่ดูดซับ ตามลำดับ บรรจุภัณฑ์ใช้งานอย่างมีนัยสำคัญลดลงอัตราการหายใจของผลไม้ในบรรจุภัณฑ์ ผลไม้เหล่านี้บรรจุอยู่เมื่อเทียบกับไม่บรรจุตัวอย่าง ซึ่งเป็นตัวควบคุมที่เก็บในสภาวะเงื่อนไข (CS) และควบคุมตู้เย็นและอุณหภูมิ (CR) มีประเมินคุณภาพของ capsicums น้ำหนักสรีรวิทยา ค่า สี (L * h * C *) ไอซ์ กรดแอสคอร์บิค ผุ และสอบ ได้รับการขยายอายุของพริกหยวก 49 วันแพคเกจที่ใช้งานอยู่ กับแพคเกจ MA เมื่อเทียบกับ 21 วัน 42 วัน กับแพคเกจ CR และ 7 วันพร้อมเอสเหนือทั้งหมด วาง sachets ผลึกซิลิกาในพื้นที่ใหญ่สามารถดูดซับความชื้น สามารถเพิ่มเติมขยายอายุการเก็บรักษาพริกหวาน 7 วันนอกจากนี้บรรจุภัณฑ์ tomodified บรรยากาศเท่ากับ 97% ผลไม้สอบIntroductionGreen bell pepper (Capsicum annuum L.) is an annual herbaceous vegetable crop which belongs to the family Solanaceae. It is one of the most popular and high valued crops worldwide and specially grown in tropical and subtropical parts of the world (Lim, Kang, Cho, Gross, & Woolf, 2007), and is commonly known as capsicum (Mahadu & Ranganna, 2010). It is produced throughout the world for fresh market consumption. Its consumption is growing popularity mainly due to its availability in wide variety of colors, shapes and sizes and its characteristics flavor (Couey, 1989; Frank, Nelson, Simonne,Behe, & Simonne, 2001; Lucier and Lin, 2001). Pepper is rich in vitamins, especially A and C, and is low in calories (Howard,Smith, Wangner, Villalion, & Burns, 1994). Bell pepper is a highly perishable vegetable and needs appropriate handling and adequate care to maintain shelf-life and quality. Alleviation of water stress is the main factor extending postharvest life of bell pepper sealed in plastic film(Ben-Yehoshua, Shapiro, Chen, & Lurie, 1983; Lurie, Shapiro, & Ben-Yehoshua, 1986; Pandey and Goswami, 2012). However,excessive relative humidity (RH) and consequent watercondensation may increase the risk of fruit decay (Polderdijk,Boerrigter, Wilkinson, Meijer, & Janssens, 1993). The storage life of capsicum significantly reduces if the control of moisture levels within the package is inadequate. The development of elevated relative humidity inside a package due to respiration of products or use of materials having low permeability to water vapor can cause condensation, which can then lead toreduced quality and safety of the produce due to microbialproliferation (Scully & Horsham, 2006). The storage life of pepper fruit is limited by pathological deterioration (Ceponis, Cappellini, & Lightner, 1987), rapid water loss during prolonged storage (Diaz-Perez, Muy-Rangel,& Mascorro, 2007), and susceptibility to chilling injury (Paull,1990). The most common decay microorganisms are Botrytis(gray mold), Alternaria, and soft rots of fungal and bacterial origin. Botrytis can grow even at the recommended pepper storage temperatures. High levels of CO2 (> 10%) can control Botrytis, but it may damages peppers. The presence of Alternaria black rot on the stem end is a symptom of chillinginjury. Bacterial soft rot is caused by several bacteria which attack damaged tissue. Soft rots can occur on washed or hydro-cooled peppers, where water sanitation was inadequate.A RH of 60–70% is desirable (Gonzalez-Aguilar & Tiznado, 1993; Wang, 1977). Peppers are subject to chilling injury when stored below 7 8C and to accelerated ripening and bacterial soft rot when stored above 13 8C. Storage at 5 8C reduces water loss and ripening, but after 2 weeks chilling injury will appear and is associated with severe pitting, weight loss, calyx darkening and decay development (Lim et al., 2007; Mercado, Quesada,Valpuerta, Reid, & Cantwell, 1995). Some pepper cultivars can be sensitive to chilling if stored at 7 8C (45 8F), so a good storage temperature range should be 7–13 8C (Gonzalez-Aguilar, 2004). Modified atmosphere packaging (MAP) along with low temperature storage extends the shelf life of fresh produce packaged in polymeric films through interaction of the natural process of respiration of produce with the restricted gas exchange across the package. Peppers derive a slight benefit from CA storage (Brackett, 1990; Rodov, Ben-Yehoshua, Fierman,& Fang, 1995; Saltveit, 1997). Low O2 atmospheres (2–5%for bell and 3–5% for chili) retard ripening and respiration during transit and storage, and have a slight benefit on quality.At 10 8C, high CO2 (>5%) can cause calyx discoloration, skinpitting กระ และนุ่มนวลในเบลล์และพริกพริก 3% O2 + 5% CO2 บรรยากาศมีประโยชน์มากสำหรับสีแดงมากกว่าสีเขียวพริกเก็บไว้ 5 – 10 8 C 3 – 4 สัปดาห์ ก่อนที่จะประมวลผล พริกพริกสามารถถูกเก็บไว้ภายใต้ 3 – 5% O2 + 15 – 20% CO2 ถึง 3 สัปดาห์ที่ 5 8C (41 8F) โดยไม่เห็นหนาวคุณภาพการบาดเจ็บหรือสูญเสียได้ การสูญเสียน้ำจากสดสามารถเกิดขึ้นได้จากการระเหยจากผลิตภัณฑ์ตามโดยซึมผ่านวัสดุบรรจุภัณฑ์เมื่อวัสดุบรรจุภัณฑ์ไม่มีกำแพงกั้นไอน้ำเพียงพอ (Kader, Zagory, & Kerbel, 1989 Meir, Rozenberger, & Aharon, 1993) Janssens (1993) แนะนำ 90 – 95% ความชื้นสัมพัทธ์ที่ 8C 8 สำหรับยอดดุลสูงสุดระหว่างผุและการคายน้ำการขนส่งคอนเทนเนอร์ของพริกหยวกในควบคุมบรรยากาศ การแก้ไขสามารถควบคุมความชื้นจะใช้ desiccants แหล่งความชื้นโดย absorbers หรือ desiccants ต่าง ๆ มีประสิทธิภาพมากในการรักษาคุณภาพอาหาร และการขยายอายุการเก็บรักษา โดย inhibiting เจริญเติบโตของจุลินทรีย์และความชื้นสัมพันธ์ของเนื้อและรสชาติ (โรดริเกวสและฮั่น 2003 Rooney, 2005) นักวิจัยต่าง ๆ ได้ศึกษาการใช้ desiccants แต่ส่วนใหญ่เหล่านี้ได้ใช้วิธีการข้อผิดพลาด trialand (Mahajan โรดริเกวส โมเต็ล & Leonhard, 2008) การใช้ตัวแทนต่าง ๆ เช่นซอร์บิทอล ไซลิทอล NaCl, KCl, CaCl2 และซิลิก้าเจลเพื่อควบคุมความชื้นสัมพัทธ์ในแพคเกจต่าง ๆ ผลไม้และผัก (AnantheswaranBeelman, & Roy, 1996; Ben-Yehoshua, Rodov, Fishman,& Peretz, 1998; Evelo and Horst, 1996; Rodov et al., 1995; Roy,Anantheswaran, & Beelman, 1995; Shirazi & Cameron, 1992;Song, Lee, & Yam, 2001; Villaescusa & Gil, 2003). Ben-Yehoshua et al. (1983) used 5 g of CaCl2 per fruit to control relative humidity between 80% and 88% in packages containing bell pepper, whereas (Chinnan and Yang, 1989) used CaCl2 in tomato packages. Probably the best-known internal package moisture absor-bers are conventional silica gels, which can absorb up to 50% of their own weight in water (De Jong et al., 2005). The use of moisture absorber sachets using silica gel/crystal is a common practice (Rooney, 1995). This approach allows food packers or even householders to decrease the water condensation on the surface of foods by reducing in-pack RH. This can be done byplacing one or more moisture absorbents between two layers of water permeable plastic or in headspace in the form of sachets(Labuza & Breene, 1989; Rooney, 1995). Moisture absorbents protect sensitive products against water and humidity. They absorb moisture that enters or remains in a package. Silica gels are useful to maintain dry conditions within packages of dry foods, down to below 0.2 water activity (Rooney, 1995).Moisture-scavenging systems based on desiccation are evolving to control the moisture by maintaining a specific relative humidity inside the package by absorbing or releasing the moisture (Hutton, 2003). In the present investigations, the post-harvest shelf life and quality indices of mature green bell pepper was evaluated under modified atmosphere packaging with sachets of silica crystal as moisture absorbent.
2. Materials and methods
2.1. Fruit material
Bell pepper (cv. Swarna) fruits of uniform size, without defects or diseases were hand-picked at their commercial maturity(firm and bright green) during the month of June from PFDC farm of Central Institute of Agricultural Engineering, Bhopal,India and transferred to packaging laboratory immediately.They were visually inspected for freedom from defects and blemishes and non-uniform, damaged, poor quality peppers were removed. Peppers were disinfected with sodium hypochlorite(100 ppm) solution in water at room temperature(25 8C) for 5 min. The washed fruits were air-dried at ambient temperature for 30 min to remove surface moisture before the experiment began. The adopted hygiene rules and low storage temperatures are consisted with the food safety regulations
(Gil, Allende, & Selma, 2011; Gonzale´z-Aguilar, Ayala-Zavala,Ruiz-Cruz, Acedo-Fe´ lix, & Diaz-Cinco, 2004).
การแปล กรุณารอสักครู่..