A mathematics curriculum should be well articulated across the grades.
Learning mathematics involves accumulating ideas and building successively deeper and more refined understanding. A school mathematics curriculum should provide a road map that helps teachers guide students to increasing levels of sophistication and depths of knowledge. Such guidance requires a well-articulated curriculum so that teachers at each level understand the mathematics that has been studied by students at the previous level and what is to be the focus at successive levels. For example, in grades K–2 students typically explore similarities and differences among two-dimensional shapes. In grades 3–5 they can identify characteristics of various quadrilaterals. In grades 6–8 they may examine and make generalizations about properties of particular quadrilaterals. In grades 9–12 they may develop logical arguments to justify conjectures about particular polygons. As they reach higher levels, students should engage more deeply with mathematical ideas and their understanding and ability to use the knowledge is expected to grow.
Without a clear articulation of the curriculum across all grades, duplication of effort and unnecessary review are inevitable. A well-articulated curriculum gives teachers guidance regarding important ideas or major themes, which receive special attention at different points in time. It also gives guidance about the depth of study warranted at particular times and when closure is expected for particular skills or concepts.
The Teaching Principle
Effective mathematics teaching requires understanding what students know and need to learn and then challenging and supporting them to learn it well.
Students learn mathematics through the experiences that teachers provide. Thus, students' understanding of mathematics, their ability to » use it to solve problems, and their confidence in, and disposition toward, mathematics are all shaped by the teaching they encounter in school. The improvement of mathematics education for all students requires effective mathematics teaching in all classrooms.
Teaching mathematics well is a complex endeavor, and there are no easy recipes for helping all students learn or for helping all teachers become effective. Nevertheless, much is known about effective mathematics teaching, and this knowledge should guide professional judgment and activity. To be effective, teachers must know and understand deeply the mathematics they are teaching and be able to draw on that knowledge with flexibility in their teaching tasks. They need to understand and be committed to their students as learners of mathematics and as human beings and be skillful in choosing from and using a variety of pedagogical and assessment strategies (National Commission on Teaching and America's Future 1996). In addition, effective teaching requires reflection and continual efforts to seek improvement. Teachers must have frequent and ample opportunities and resources to enhance and refresh their knowledge.
The Professional Standards for Teaching Mathematics (NCTM, 1991) presented six standards for the teaching of mathematics. They addressed–
• worthwhile mathematical tasks;
• the teacher's role in discourse;
• the student's role in discourse;
• tools for enhancing discourse;
• the learning environment;
• the analysis of teaching and learning.
Effective teaching requires knowing and understanding mathematics, students as learners, and pedagogical strategies.
Teachers need several different kinds of mathematical knowledge—knowledge about the whole domain; deep, flexible knowledge about curriculum goals and about the important ideas that are central to their grade level; knowledge about the challenges students are likely to encounter in learning these ideas; knowledge about how the ideas can be represented to teach them effectively; and knowledge about how students' understanding can be assessed. This knowledge helps teachers make curricular judgments, respond to students' questions, and look ahead to where concepts are leading and plan accordingly. Pedagogical knowledge, much of which is acquired and shaped through the practice of teaching, helps teachers understand how students learn mathematics, become facile with a range of different teaching techniques and instructional materials, and organize and manage the classroom. Teachers need to understand the big ideas of mathematics and be able to represent mathematics as a coherent and connected enterprise (Schifter 1999; Ma 1999). Their decisions and their actions in the classroom—all of which affect how well their students learn mathematics—should be based on this knowledge.
This kind of knowledge is beyond what most teachers experience in standard preservice mathematics courses in the United States. For example, that fractions can be understood as parts of a whole, the quotient of two integers, or a number on a line is important for mathematics teachers (Ball and Bass forthcoming). Such understanding might be characterized as "profound understanding of fundamental mathematics" (Ma 1999). Teachers also need to understand the different representations of an idea, the relative strengths and weaknesses of each, and how they are related to one another (Wilson, Shulman, and Richert 1987). They need to know the ideas with which students often have difficulty and ways to help bridge common misunderstandings. »
Effective mathematics teaching requires a serious commitment to the development of students' understanding of mathematics. Because students learn by connecting new ideas to prior knowledge, teachers must understand what their students already know. Effective teachers know how to ask questions and plan lessons that reveal students' prior knowledge; they can then design experiences and lessons that respond to, and build on, this knowledge.
Teachers have different styles and strategies for helping students learn particular mathematical ideas, and there is no one "right way" to teach. However, effective teachers recognize that the decisions they make shape students' mathematical dispositions and can create rich settings for learning. Selecting and using suitable curricular materials, using appropriate instructional tools and techniques, and engaging in reflective practice and continuous self-improvement are actions good teachers take every day.
One of the complexities of mathematics teaching is that it must balance purposeful, planned classroom lessons with the ongoing decision making that inevitably occurs as teachers and students encounter unanticipated discoveries or difficulties that lead them into uncharted territory. Teaching mathematics well involves creating, enriching, maintaining, and adapting instruction to move toward mathematical goals, capture and sustain interest, and engage students in building mathematical understanding.
Effective teaching requires a challenging and supportive classroom learning environment.
Teachers make many choices each day about how the learning environment will be structured and what mathematics will be emphasized. These decisions determine, to a large extent, what students learn. Effective teaching conveys a belief that each student can and is expected to understand mathematics and that each will be supported in his or her efforts to accomplish this goal.
Teachers establish and nurture an environment conducive to learning mathematics through the decisions they make, the conversations they orchestrate, and the physical setting they create. Teachers' actions are what encourage students to think, question, solve problems, and discuss their ideas, strategies, and solutions. The teacher is responsible for creating an intellectual environment where serious mathematical thinking is the norm. More than just a physical setting with desks, bulletin boards, and posters, the classroom environment communicates subtle messages about what is valued in learning and doing mathematics. Are students' discussion and collaboration encouraged? Are students expected to justify their thinking? If students are to learn to make conjectures, experiment with various approaches to solving problems, construct mathematical arguments and respond to others' arguments, then creating an environment that fosters these kinds of activities is essential.
In effective teaching, worthwhile mathematical tasks are used to introduce important mathematical ideas and to engage and challenge students intellectually. Well-chosen tasks can pique students' curiosity and draw them into mathematics. The tasks may be connected to the » real-world experiences of students, or they may arise in contexts that are purely mathematical. Regardless of the context, worthwhile tasks should be intriguing, with a level of challenge that invites speculation and hard work. Such tasks often can be approached in more than one way, such as using an arithmetic counting approach, drawing a geometric diagram and enumerating possibilities, or using algebraic equations, which makes the tasks accessible to students with varied prior knowledge and experience.
Worthwhile tasks alone are not sufficient for effective teaching. Teachers must also decide what aspects of a task to highlight, how to organize and orchestrate the work of the students, what questions to ask to challenge those with varied levels of expertise, and how to support students without taking over the process of thinking for them and thus eliminating the challenge.
Effective teaching requires continually seeking improvement.
Effective teaching involves observing students, listening carefully to their ideas and explanations, having mathematical goals, and using the information to make instructional decisions. Teachers who employ such practices motivate students to engage in mathematical thinking and reasoning and provide learning opportunities that challenge students at all levels of understanding. Effective teaching requires conti