Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Her greenhouse-grown soybean plants fix twice as much nitrogen from the atmosphere as their natural counterparts, grow larger and produce up to 36 percent more seeds.
Tegeder designed a novel way to increase the flow of nitrogen, an essential nutrient, from specialized bacteria in soybean root nodules to the seed-producing organs. She and Amanda Carter, a biological sciences graduate student, found the increased rate of nitrogen transport kicked the plants into overdrive.
Their work, published recently in Current Biology, is a major breakthrough in the science of improving crop yields. It could eventually help address society's critical challenge of feeding a growing human population while protecting the environment.
"The biggest implication of our research is that by ramping up the natural nitrogen allocation process we can increase the amount of food we produce without contributing to further agricultural pollution," Tegeder said. "Eventually we would like to transfer what we have learned to other legumes and plants that humans grow for food."
Improving grain yields
Legumes account for around 30 percent of the world's agricultural production. They consist of plants like soybeans, alfalfa, peas, beans and lentils, among others.
Unlike crops that rely on naturally occurring and artificially made nitrogen from the soil, legumes contain rhizobia bacterioids in their root nodules that have the unique capability of converting or "fixing" nitrogen gas from the atmosphere.
For years, scientists have tried to increase the rate of nitrogen fixation in legumes by altering rhizobia bacterioid function or interactions that take place between the bacterioid and the root nodule cells.
Tegeder took a different approach: She increased the number of proteins that help move nitrogen from the rhizobia bacteria to the plant's leaves, seed-producing organs and other areas where it is needed.
The additional transport proteins sped up the overall export of nitrogen from the root nodules. This initiated a feedback loop that caused the rhizobia to start fixing more atmospheric nitrogen, which the plant then used to produce more seeds.
"They are bigger, grow faster and generally look better than natural soybean plants," Tegeder said. "Some evidence we have suggests they might also be highly efficient under stressful conditions like drought."
Protecting the environment
Nitrogen is a macronutrient essential for plant growth. Large amounts of synthetic nitrogen fertilizer are applied around the world to ensure high plant productivity.
Application is an environmental issue in industrialized countries like the United States because of high energy input, increased greenhouse gas emissions, water pollution and other adverse effects on ecosystems and human health.
In developing countries, where nitrogen fertilizer is scarce, insufficient plant nitrogen results in low crop yields and limited food supplies.
Tegeder thinks her soybean-focused research can eventually be applied to varieties of legumes suited for a diverse array of climates. One major benefit of growing legumes such as chickpeas, common beans, peas and soybeans is that they not only can use atmospheric nitrogen for their own growth but also leave residual nitrogen in the soil for subsequent crops.
Hence, increasing nitrogen fixation could improve overall plant productivity for farmers who grow legumes in both industrial and developing countries while diminishing or eliminating the need for nitrogen fertilizers.
"Legumes with higher yields have huge implications for agriculture and food production around the world," Tegeder said. "Our research also has the potential to be transferred to other crop plants that don't fix nitrogen from the atmosphere but would benefit from being able to uptake nitrogen more efficiently from the soil."
Her work is in keeping with WSU's Grand Challenges, a suite of research initiatives aimed at large societal issues. It is particularly relevant to the challenge of sustainable resources and its theme of supplying food for future generations.
tegeder mechthild นักชีววิทยามหาวิทยาลัยรัฐวอชิงตันได้พัฒนาวิธีเพื่อเพิ่มผลผลิตและคุณภาพของถั่วเหลืองการปลูกถั่วเหลืองของเธอแก้ไขสองครั้งเป็นไนโตรเจนจากบรรยากาศเป็น counterparts ธรรมชาติของพวกเขาเติบโตขนาดใหญ่และผลิตได้ถึง 36 เปอร์เซ็นต์เมล็ดมากขึ้นtegeder ออกแบบวิธีใหม่เพื่อเพิ่มการไหลของไนโตรเจน ธาตุอาหารที่จำเป็น จากแบคทีเรีย เฉพาะในปมรากถั่วเหลืองเพื่อผลิตเมล็ดพันธุ์ อวัยวะ เธอกับอแมนด้า คาร์เตอร์ , นักศึกษาปริญญาโท วิทยาศาสตร์ชีวภาพ พบอัตราการเพิ่มขึ้นของปริมาณการขนส่งเตะพืชลงใน Overdrive .ผลงานตีพิมพ์เมื่อเร็วๆนี้ในชีววิทยาปัจจุบัน เป็นความก้าวหน้าที่สำคัญในศาสตร์ของการปรับปรุงผลผลิตพืช ในที่สุดก็สามารถช่วยแก้ไขสังคมวิกฤตท้าทายของการให้การเติบโตประชากรมนุษย์ในขณะที่ปกป้องสิ่งแวดล้อม" ของที่ใหญ่ที่สุดของการวิจัยของเราคือ โดยการกระโจนขึ้นไนโตรเจนธรรมชาติจัดสรรกระบวนการที่เราสามารถเพิ่มปริมาณของอาหารที่เราผลิตโดยไม่เกิดมลพิษทางการเกษตรต่อไป " tegeder กล่าว ในที่สุดเราอยากจะถ่ายทอดสิ่งที่เราได้เรียนรู้กับพืชตระกูลถั่วอื่น ๆ และพืชที่ปลูกเป็นอาหารมนุษย์ . "การปรับปรุงผลผลิตเมล็ดพืชตระกูลถั่วบัญชีประมาณร้อยละ 30 ของผลผลิตทางการเกษตรของโลก พวกเขาประกอบด้วยพืชเช่นถั่วเหลือง , หญ้า , ถั่ว , ถั่วและถั่ว , หมู่คนอื่น ๆซึ่งแตกต่างจากพืชที่ต้องพึ่งพาธรรมชาติที่เกิดขึ้นจริงและทำให้ไนโตรเจนจากดิน ถั่วมีไรโซเบียมในปมรากของ bacterioids ที่มีความสามารถเฉพาะตัวของการแปลงหรือ " ซ่อม " ก๊าซไนโตรเจนจากบรรยากาศที่นักวิทยาศาสตร์ได้พยายามที่จะเพิ่มอัตราการตรึงไนโตรเจนโดยไรโซเบียมในพืชตระกูลถั่วการ bacterioid ฟังก์ชันหรือปฏิสัมพันธ์ที่เกิดขึ้นระหว่าง bacterioid และรากปมเซลล์tegeder เอาวิธีการที่แตกต่างกัน : เธอเพิ่มจำนวนของโปรตีน ที่ช่วยย้ายไนโตรเจนจากแบคทีเรียไรโซเบียมกับใบของพืช เมล็ดพันธุ์ การผลิตอวัยวะและพื้นที่อื่น ๆที่จำเป็นโปรตีนขนส่งเพิ่มเติมเร่งการส่งออกโดยรวมของไนโตรเจนจากรากของสิว นี้เริ่มต้นความคิดเห็นลูปนั้นทำให้ไรโซเบียมเริ่มต้นตรึงไนโตรเจนในบรรยากาศมากขึ้น ซึ่งพืชที่ใช้แล้วเพื่อผลิตเมล็ดพันธุ์มากขึ้น" พวกเขาจะใหญ่ โตเร็ว และมักจะดูดีกว่าถั่วเหลือง พืชธรรมชาติ " tegeder กล่าว หลักฐานที่เราได้แสดงให้เห็นพวกเขายังอาจจะที่มีประสิทธิภาพสูงภายใต้สภาวะเครียด เช่น ความแห้งแล้ง .การปกป้องสิ่งแวดล้อมไนโตรเจนเป็นอาหารที่จำเป็นสำหรับการเจริญเติบโตของพืช ขนาดใหญ่ปริมาณของปุ๋ยไนโตรเจนสังเคราะห์ที่ใช้ทั่วโลกเพื่อให้แน่ใจว่าผลผลิตพืชสูงสมัครเป็นปัญหาสภาวะแวดล้อมในประเทศอุตสาหกรรม เช่น สหรัฐอเมริกา เพราะค่าพลังงานสูง เพิ่มการปล่อยก๊าซเรือนกระจกมลพิษทางน้ำและผลกระทบอื่น ๆที่ไม่พึงประสงค์ในระบบนิเวศและสุขภาพของมนุษย์ในประเทศกำลังพัฒนา ซึ่งปุ๋ยขาดแคลน ไม่เพียงพอ พืชไนโตรเจนผลผลผลิตต่ำและเสบียงอาหารจำกัดtegeder คิดว่าถั่วเหลืองของเธอเน้นการวิจัยในที่สุดสามารถใช้กับพันธุ์พืชตระกูลถั่วเหมาะสำหรับอาร์เรย์มีความหลากหลายของสภาพอากาศ . หนึ่งประโยชน์หลักของการปลูกพืชตระกูลถั่ว เช่น ถั่วทั่วไป chickpeas , ถั่วและเมล็ด คือ ว่า พวกเขาไม่เพียง แต่สามารถใช้ไนโตรเจนในบรรยากาศสำหรับการเจริญเติบโตของตนเอง แต่ยังปล่อยไนโตรเจนตกค้างในดินต่อพืชดังนั้น การเพิ่มการตรึงไนโตรเจนสามารถปรับปรุงประสิทธิภาพการผลิตพืช โดยเกษตรกรที่ปลูกพืชทั้งในอุตสาหกรรมและประเทศกำลังพัฒนาในขณะที่ลดหรือขจัดความต้องการปุ๋ยไนโตรเจน" ถั่วกับผลตอบแทนที่สูงขึ้นมีผลกระทบขนาดใหญ่เพื่อการเกษตรและการผลิตอาหารทั่วโลก , " tegeder กล่าว งานวิจัยของเราก็มีศักยภาพที่จะถูกโอนไปยังพืชอื่น ๆที่ไม่ได้ตรึงไนโตรเจนจากบรรยากาศ แต่จะได้ประโยชน์จากความสามารถในการดูดซึมไนโตรเจนได้อย่างมีประสิทธิภาพมากขึ้นจากดิน”งานของเธอในการรักษาด้วย wsu แกรนด์ท้าทาย ชุดโครงการวิจัยมุ่งประเด็นทางสังคมขนาดใหญ่ มันเป็นโดยเฉพาะอย่างยิ่งที่เกี่ยวข้องกับความท้าทายของทรัพยากรที่ยั่งยืน และรูปแบบของการจัดหาอาหารสำหรับคนรุ่นอนาคต
การแปล กรุณารอสักครู่..
