We study the existence of monotonic and nonnegative solutions of a nonlinear quadratic Volterra-Stieltjes integral equation in the space of real functions being continuous on a bounded interval. The main tools used in our considerations are the technique of measures of noncompactness in connection with the theory of functions of bounded variation and the theory of Riemann-Stieltjes integral. The obtained results can be easily applied to the class of fractional integral equations and Volterra-Chandrasekhar integral equations, among others.