Mathematics research[edit]
Further information: List of things named after Peter Gustav Lejeune Dirichlet
Number theory[edit]
Number theory was Dirichlet's main research interest,[6] a field in which he found several deep results and in proving them introduced some fundamental tools, many of which were later named after him. In 1837 he published Dirichlet's theorem on arithmetic progressions, using mathematical analysis concepts to tackle an algebraic problem and thus creating the branch of analytic number theory. In proving the theorem, he introduced the Dirichlet characters and L-functions.[6][7] Also, in the article he noted the difference between the absolute and conditional convergence of series and its impact in what was later called the Riemann series theorem. In 1841 he generalized his arithmetic progressions theorem from integers to the ring of Gaussian integers mathbb{Z}[i].[1]
In a couple of papers in 1838 and 1839 he proved the first class number formula, for quadratic forms (later refined by his student Kronecker). The formula, which Jacobi called a result "touching the utmost of human acumen", opened the way for similar results regarding more general number fields.[1] Based on his research of the structure of the unit group of quadratic fields, he proved the Dirichlet unit theorem, a fundamental result in algebraic number theory.[7]
He first used the pigeonhole principle, a basic counting argument, in the proof of a theorem in diophantine approximation, later named after him Dirichlet's approximation theorem. He published important contributions to Fermat's last theorem, for which he proved the cases n=5 and n=14, and to the biquadratic reciprocity law.[1] The Dirichlet divisor problem, for which he found the first results, is still an unsolved problem in number theory despite later contributions by other researchers.
Analysis[edit]
Dirichlet found and proved the convergence conditions for Fourier series decomposition. Pictured: the first four Fourier series approximations for a square wave.
Inspired by the work of his mentor in Paris, Dirichlet published in 1829 a famous memoir giving the conditions, showing for which functions the convergence of the Fourier series holds. Before Dirichlet's solution, not only Fourier, but also Poisson and Cauchy had tried unsuccessfully to find a rigorous proof of convergence. The memoir pointed out Cauchy's mistake and introduced Dirichlet's test for the convergence of series. It also introduced the Dirichlet function as an example that not any function is integrable (the definite integral was still a developing topic at the time) and, in the proof of the theorem for the Fourier series, introduced the Dirichlet kernel and the Dirichlet integral.[8]
Dirichlet also studied the first boundary value problem, for the Laplace equation, proving the unicity of the solution; this type of problem in the theory of partial differential equations was later named the Dirichlet problem after him.[6] In the proof he notably used the principle that the solution is the function that minimizes the so-called Dirichlet energy. Riemann later named this approach the Dirichlet principle, although he knew it had also been used by Gauss and by Lord Kelvin.[1]
Definition of function[edit]
While trying to gauge the range of functions for which convergence of the Fourier series can be shown, Dirichlet defines a function by the property that "to any x there corresponds a single finite y", but then restricts his attention to piecewise continuous functions. Based on this, he is credited with introducing the modern concept for a function, as opposed to the older vague understanding of a function as an analytic formula.[1] Imre Lakatos cites Hermann Hankel as the early origin of this attribution, but disputes the claim saying that "there is ample evidence that he had no idea of this concept [...] for instance, when he discusses piecewise continuous functions, he says that at points of discontinuity the function has two values".[9]
Other fields[edit]
Dirichlet also worked in mathematical physics, lecturing and publishing research in potential theory (including the Dirichlet problem and Dirichlet principle mentioned above), the theory of heat and hydrodynamics.[6] He improved on Lagrange's work on conservative systems by showing that the condition for equilibrium is that the potential energy is minimal.[10]
Although he didn't publish much in the field, Dirichlet lectured on probability theory and least squares, introducing some original methods and results, in particular for limit theorems and an improvement of Laplace's method of approximation related to the central limit theorem.[11] The Dirichlet distribution and the Dirichlet process, based on the Dirichlet integral, are named after him.