pH of sample solution plays an important role on adsorption efficiency, and therefore is proved to be a primary parameter for SPE or MSPE. Moreover, a proper pH can bring down the interference
of the matrix and increase the selectivity of the method.The adsorption behavior of Cr(III) and Cr(VI) on Zincon–Si–MNPs was investigated based on the experimental procedure and the results are shown. As can be seen that the recovery of Cr (III) increased with the increase of pH from 2.0 to 6.0, and then remained constant quantitatively, and finally decreased sharply
after pH49.5. The trend of the effect of pH on the recovery of Cr (VI) was similar with Cr(III), but the platform pH ranged from 6.0 to 7.0. According to the above results, we found that both Cr(III)
and Cr(VI) are quantitatively reserved on Zincon–Si–MNPs in the
pH range of 6.0–7.0, while only Cr(III) is retained on the absorbent
in the pH range of 9.0–9.5. So, speciation of Cr(III) and Cr(VI) can
be attained, and notably, no reduction and oxidation process is
needed prior to MSPE operation. For further study, pH 6.5 was
chosen for preconcentration of total Cr and pH 9.1 was selected for
speciation of Cr(III).
The different adsorption behavior of Cr(III) and Cr(VI) on
Zincon–Si–MNPs is due to the existence form of Cr(III) and Cr(VI)
in different pH conditions and surface nature of the absorbent. In
view of Cr(III), on one hand, it tends to be hydrolyzed in aqueous
solution at pH44 and forms several positively charged species
including Cr3+ and Cr(OH)2+ [32], and then can be chelated with N
atom of zincon, which leaded to increasing recovery from pH
4.0 to 6.0 and moreover quantitative recovery when pH was
bwteen 6.0 and 9.5. After pH49.5, however, the cations of Cr(III)
is prone to form precipitate, resulting in rapid decrease in the
recovery. Another reason for little recovery of Cr(III) below pH
4.0 is the strong acidc effect on chelation of zincon to Cr(III). With
respect to Cr(VI), it exists mainly in the form of HCrO4
− in the pH
range from 2 to 7, associated with small concentration of H2CrO4
and CrO4
2−
, as well as a portion of Cr2O7
2− formed by condensation
of two HCrO4
− ions at weak acidic solution. While CrO4
2− is the
predominant species of Cr(VI) when pH47, associated with small
and tiny concentration of HCrO4
− and H2CrO4, respectively [33]. In
acidic medium, the electrostatic interaction may occur between
the anions of Cr(VI) and protonated N-containg groups on the
surface of Zincon–Si–MNPs, and therefore, Cr(VI) anions were
reserved on the absorbent. Moreover, the recovery of Cr(VI)
increased as the pH increased from 2.0 to 6.0 and approched
100% when pH was 6.0–7.0. After pH47.0, however, the anions of
Cr(VI) cannot be absorbed because of the electrostatic repulsion of
dissociated phenolic hydroxyl group and the negatively charged
surface of Zincon–Si–MNPs, which caused significant decrease in
recovery of Cr(VI)
pH ของสารละลายตัวอย่าง บทบาทสำคัญต่อประสิทธิภาพการดูดซับ และดังนั้น จะถูกพิสูจน์แล้วว่าเป็นค่าหลักสำหรับเอสพีหรือ mspe . และ pH ที่เหมาะสมสามารถนำลงรบกวน
ของเมทริกซ์และเพิ่มการเลือกวิธีการ พฤติกรรมการดูดซับโครเมียม ( III ) และโครเมียม ( VI ) ใน zincon –ศรี– mnps ถูกสอบสวนตามกระบวนการทดลองและผลลัพธ์ที่แสดงดังจะเห็นได้ว่า การฟื้นตัวของโครเมียม ( III ) เพิ่มขึ้น เมื่อเพิ่มพีเอช 2.0 6.0 แล้วคงที่ ปริมาณลดลงอย่างรวดเร็ว และในที่สุดหลังจาก ph49.5
. แนวโน้มของผลของ pH ต่อการฟื้นตัวของ Cr ( VI ) คล้ายๆ กับโครเมียม ( III ) แต่แพลตฟอร์มที่ pH ระหว่าง 6.0 ถึง 7.0 . จากผลดังกล่าวข้างต้น เราจะพบว่า โครเมียม ( III )
2และโครเมียม ( VI ) มีปริมาณห้องพัก zincon –ศรี– mnps ใน
pH ในช่วง 6.0 – 7.0 ในขณะที่เพียง Cr ( III ) ยังคงอยู่ในการดูดซับ
ในช่วง pH 9.0 – 9.5 . ดังนั้นชนิดของโครเมียม ( III ) และโครเมียม ( VI )
จะบรรลุ ซึ่งไม่มีปฏิกิริยารีดักชันและออกซิเดชันกระบวนการ
ต้องการก่อน mspe การดําเนินงาน ศึกษาต่อ , pH 6.5 คือ
เลือกทั้งหมดและเพิ่มความเข้มข้นของโครเมียมพีเอช 91 เลือกเป็นชนิดของโครเมียม ( III )
.
ความแตกต่างพฤติกรรมการดูดซับโครเมียม ( III ) และโครเมียม ( VI )
zincon –ศรี– mnps เนื่องจากการดำรงอยู่ของรูปแบบของโครเมียม ( III ) และโครเมียม ( VI )
ในพีเอชที่แตกต่างกันและพื้นผิวธรรมชาติของการดูดซับ ใน
มุมมองของโครเมียม ( III ) บนมือข้างหนึ่งก็มีแนวโน้มที่จะถูกไฮโดรไลซ์ในสารละลาย
โซลูชั่นที่ ph44 และรูปแบบหลายประจุบวกชนิด
รวมทั้งทางเคมีและ Cr ( OH ) 2 [ 32 ]แล้วสามารถ คีเลต กับ N
อะตอมของ zincon ซึ่งนำไปสู่การเพิ่มการกู้คืนจาก pH 4.0 และ 6.0 และ
bwteen ปริมาณการกู้คืนเมื่อ pH 6.0 และ 9.5 . หลังจาก ph49.5 อย่างไรก็ตาม สารโครเมียม ( III )
มีแนวโน้มที่จะฟอร์มการส่งผลอย่างรวดเร็วลดลงใน
การกู้คืน อีกเหตุผลหนึ่งสำหรับการกู้คืนของโครเมียม ( III ) ด้านล่าง pH
40 เป็นแรง acidc มีผลต่อ chelation ของ zincon ให้ Cr ( III ) กับ
เคารพ Cr ( VI ) มันมีอยู่ส่วนใหญ่ในรูปแบบของ hcro4
−ในช่วง pH
2 ถึง 7 ที่เกี่ยวข้องกับปริมาณขนาดเล็กของ h2cro4
cro4 2 −และเป็นส่วนหนึ่งของ cr2o7
2 −ที่เกิดจากการควบแน่นของ hcro4
2 −ไอออนที่ อ่อนเปรี้ยว โซลูชั่น ในขณะที่ cro4
2 −เป็นชนิดเด่นของ Cr ( VI ) เมื่อ ph47 ,ที่เกี่ยวข้องกับ เล็ก ๆ hcro4
และความเข้มข้นและ− h2cro4 ตามลำดับ [ 33 ]
ในตัวกลางที่เป็นกรดปฏิสัมพันธ์ไฟฟ้าสถิตที่อาจเกิดขึ้นระหว่าง
แอนไอออนโครเมียม ( VI ) และ protonated n-containg กลุ่มบนพื้นผิวของ zincon
–ศรี– mnps , และดังนั้น , Cr ( VI ) แอนถูก
สงวนบนดูดซับ นอกจากนี้ การฟื้นตัวของ Cr ( VI )
เพิ่มขึ้นเมื่อ pH เพิ่มขึ้นจาก 2.0 ถึง 6.0 และการ approched
100% เมื่อ pH 6.0 - 7.0 . หลังจาก ph47.0 , อย่างไรก็ตาม , แอนไอออนของ
Cr ( VI ) ไม่สามารถดูดซึมได้ เพราะแรงผลักทางไฟฟ้าสถิต
ทางใจหมู่ฟีนอลและค่าบริการ
ลบพื้นผิวของ zincon –ศรี– mnps ซึ่งทำให้ลดลงอย่างมากใน
การฟื้นตัวของ Cr ( VI )
การแปล กรุณารอสักครู่..
