Crystalloids vs. colloids
One of the methods for treating fluid and electrolyte alterations is the infusion of I.V. solutions, which have distinctive differences in composition that affect how the body reacts to and utilizes them. When administering I.V. therapy, you need to understand the nature of the solution being initiated and how it will affect your patient's condition.
I.V. solutions for fluid replacement may be placed in two general categories: colloids and crystalloids. Colloids contain large molecules that don't pass through semipermeable membranes. When infused, they remain in the intravascular compartment and expand intravascular volume by drawing fluid from extravascular spaces via their higher oncotic pressure. We'll discuss colloids in detail later.
Crystalloids are solutes capable of crystallization that are easily mixed and dissolved in a solution. The solutes may be electrolytes or nonelectrolytes, such as dextrose.
Crystalloid solutions contain small molecules that flow easily across semipermeable membranes, allowing for transfer from the bloodstream into the cells and body tissues. This may increase fluid volume in both the interstitial and intravascular spaces.
Crystalloid solutions are distinguished by their relative tonicity (before infusion) in relation to plasma. Tonicity refers to the concentration of dissolved molecules held within the solution.5,6 The following sections discuss isotonic, hypotonic, and hypertonic crystalloid solutions in detail.
Crystalloids vs. colloids
One of the methods for treating fluid and electrolyte alterations is the infusion of I.V. solutions, which have distinctive differences in composition that affect how the body reacts to and utilizes them. When administering I.V. therapy, you need to understand the nature of the solution being initiated and how it will affect your patient's condition.
I.V. solutions for fluid replacement may be placed in two general categories: colloids and crystalloids. Colloids contain large molecules that don't pass through semipermeable membranes. When infused, they remain in the intravascular compartment and expand intravascular volume by drawing fluid from extravascular spaces via their higher oncotic pressure. We'll discuss colloids in detail later.
Crystalloids are solutes capable of crystallization that are easily mixed and dissolved in a solution. The solutes may be electrolytes or nonelectrolytes, such as dextrose.
Crystalloid solutions contain small molecules that flow easily across semipermeable membranes, allowing for transfer from the bloodstream into the cells and body tissues. This may increase fluid volume in both the interstitial and intravascular spaces.
Crystalloid solutions are distinguished by their relative tonicity (before infusion) in relation to plasma. Tonicity refers to the concentration of dissolved molecules held within the solution.5,6 The following sections discuss isotonic, hypotonic, and hypertonic crystalloid solutions in detail.
การแปล กรุณารอสักครู่..
