. IntroductionAs it is well known different physical processes contrib การแปล - . IntroductionAs it is well known different physical processes contrib ไทย วิธีการพูด

. IntroductionAs it is well known d

. Introduction
As it is well known different physical processes contribute to
rubber friction. Dry friction of rubbers is controlled, among others,
by adhesion, macro hysteresis, micro- or surface roughness generated
hysteresis, and cohesion (friction contribution from rubber
wear) [1,2]. In presence of lubricant, the viscous component of
friction also appears and can be interpreted as energy loss due to
the viscous nature of lubricant. Contribution of different components
to sliding friction depends on the macro geometry, detailed
surface micro-topography, relative tangential velocity, cleanliness
of surfaces, temperature, material and surface properties of rubbing
bodies, applied normal load, filler material and content,
lubricant and its additives, and surface treatment/coating of the
harder counterpart or the rubber surface. Interaction of friction
mechanisms and complexity of physical processes involved in
rubber friction, however, make the friction prediction very
challenging.
From engineering point of view reciprocating rubber seals are
of primary importance because they are frequently used machine
elements. During operation most of them slide on (apparently)
smooth hard (compared to rubber) countersurface in presence of
lubricant. Seals have smooth surface but the surface of harder
counterpart is usually even smoother (see [3]) in order to reduce
friction, rubber wear and wear induced leakage. It is well known
that reciprocating rubber seals operate frequently in boundary and
mixed lubrication regime. However different explanations exist in
the literature for the friction contribution arisen in the boundary
lubrication regime. On the one hand [4] states that the friction is
determined predominantly by interaction between the solids and
between the solids and the liquid. Bulk flow properties of the
liquid play little or no part in friction. In other words, the friction
contribution arisen in the boundary lubrication regime is considered
to be due to the shearing of a thin boundary lubricant layer
separating contacting surfaces or shearing of the interface
between the boundary layer and the solid surfaces. Shear strength
of the boundary lubricant layer is influenced by both properties of
the contacting surfaces and those of the lubricant. Its magnitude
can only be determined by experiments conducted at sufficiently
low sliding velocity where the hydrodynamic effect is negligible.
In [5], it was also pointed out that the applied normal pressure and
the adhesion may induce solid/solid contact between the adhered
boundary lubricant islands (discontinuous boundary lubricant
layer) causing relatively high coefficient of friction. In the boundary
lubrication regime, applied normal load is carried by asperity
contacts and closed lubricant pools formed in the roughness valleys
of harder surface. On the other hand, in [6,7], the importance
of micro-hysteretic friction component is emphasized in case of
boundary lubrication. The authors hypothesized that the friction
contribution arisen in boundary lubrication regime is mainly due
to the surface roughness generated hysteresis (micro-hysteresis).
The reason why this was hypothesized is that the very thin
boundary layer formed typically from few layers of lubricant
molecules makes solid type asperity contacts possible. In contrast,
Smith’s theory (see [1]) states that if the adhesion propensity is
very low (this is the case when adhesion eliminating boundary
layer separates contacting surfaces) the micro-hysteretic friction
Contents lists available at ScienceDirect
journal homepage: www.elsevier.com/locate/triboint
Tribology International
http://dx.doi.org/10.1016/j.triboint.2015.09.018
0301-679X/& 2015 Published by Elsevier Ltd.
E-mail address: goda.tibor@gt3.bme.hu
Tribology International 93 (2016) 142–150
will disappear. Consequently Smith’s theory is based on “adhesion-related
surface deformation hysteresis” where the decreasing
adhesion propensity results in decreasing micro-hysteretic friction.
Additionally Smith assumes that the micro-hysteretic friction
contribution is practically independent of the nominal contact
pressure.
Main objective of the current study is to investigate the contribution
of micro-hysteresis to rubber friction in case of apparently
smooth surfaces. In order to attain this objective it is needed
to reanalyze measurement results of [6], and compare them
additional test results. Like in [6], friction test results reported for
nitrile butadiene rubber (NBR) are in the focus of this work
because, contrary to its great practical importance, surprisingly
little attention is paid in the literature to oil lubricated sliding
friction of NBR squeezing against (apparently) smooth steel
0/5000
จาก: -
เป็น: -
ผลลัพธ์ (ไทย) 1: [สำเนา]
คัดลอก!
. IntroductionAs it is well known different physical processes contribute torubber friction. Dry friction of rubbers is controlled, among others,by adhesion, macro hysteresis, micro- or surface roughness generatedhysteresis, and cohesion (friction contribution from rubberwear) [1,2]. In presence of lubricant, the viscous component offriction also appears and can be interpreted as energy loss due tothe viscous nature of lubricant. Contribution of different componentsto sliding friction depends on the macro geometry, detailedsurface micro-topography, relative tangential velocity, cleanlinessof surfaces, temperature, material and surface properties of rubbingbodies, applied normal load, filler material and content,lubricant and its additives, and surface treatment/coating of theharder counterpart or the rubber surface. Interaction of frictionmechanisms and complexity of physical processes involved inrubber friction, however, make the friction prediction verychallenging.From engineering point of view reciprocating rubber seals areof primary importance because they are frequently used machineelements. During operation most of them slide on (apparently)smooth hard (compared to rubber) countersurface in presence oflubricant. Seals have smooth surface but the surface of hardercounterpart is usually even smoother (see [3]) in order to reducefriction, rubber wear and wear induced leakage. It is well knownthat reciprocating rubber seals operate frequently in boundary andmixed lubrication regime. However different explanations exist inthe literature for the friction contribution arisen in the boundarylubrication regime. On the one hand [4] states that the friction isdetermined predominantly by interaction between the solids andbetween the solids and the liquid. Bulk flow properties of theliquid play little or no part in friction. In other words, the frictioncontribution arisen in the boundary lubrication regime is consideredto be due to the shearing of a thin boundary lubricant layerseparating contacting surfaces or shearing of the interfacebetween the boundary layer and the solid surfaces. Shear strengthof the boundary lubricant layer is influenced by both properties ofthe contacting surfaces and those of the lubricant. Its magnitudecan only be determined by experiments conducted at sufficientlylow sliding velocity where the hydrodynamic effect is negligible.In [5], it was also pointed out that the applied normal pressure andthe adhesion may induce solid/solid contact between the adheredboundary lubricant islands (discontinuous boundary lubricantlayer) causing relatively high coefficient of friction. In the boundarylubrication regime, applied normal load is carried by asperitycontacts and closed lubricant pools formed in the roughness valleysof harder surface. On the other hand, in [6,7], the importanceof micro-hysteretic friction component is emphasized in case ofboundary lubrication. The authors hypothesized that the frictioncontribution arisen in boundary lubrication regime is mainly dueto the surface roughness generated hysteresis (micro-hysteresis).The reason why this was hypothesized is that the very thinboundary layer formed typically from few layers of lubricantmolecules makes solid type asperity contacts possible. In contrast,Smith’s theory (see [1]) states that if the adhesion propensity isvery low (this is the case when adhesion eliminating boundarylayer separates contacting surfaces) the micro-hysteretic frictionContents lists available at ScienceDirectjournal homepage: www.elsevier.com/locate/tribointTribology Internationalhttp://dx.doi.org/10.1016/j.triboint.2015.09.0180301-679X/& 2015 Published by Elsevier Ltd.E-mail address: goda.tibor@gt3.bme.huTribology International 93 (2016) 142–150will disappear. Consequently Smith’s theory is based on “adhesion-relatedsurface deformation hysteresis” where the decreasingadhesion propensity results in decreasing micro-hysteretic friction.Additionally Smith assumes that the micro-hysteretic frictioncontribution is practically independent of the nominal contactpressure.Main objective of the current study is to investigate the contributionof micro-hysteresis to rubber friction in case of apparentlysmooth surfaces. In order to attain this objective it is neededto reanalyze measurement results of [6], and compare them
additional test results. Like in [6], friction test results reported for
nitrile butadiene rubber (NBR) are in the focus of this work
because, contrary to its great practical importance, surprisingly
little attention is paid in the literature to oil lubricated sliding
friction of NBR squeezing against (apparently) smooth steel
การแปล กรุณารอสักครู่..
ผลลัพธ์ (ไทย) 2:[สำเนา]
คัดลอก!
. บทนำ
เป็นที่รู้จักกันดีในกระบวนการทางกายภาพที่แตกต่างกันนำไปสู่
​​แรงเสียดทานยาง แรงเสียดทานแห้งของยางจะถูกควบคุมหมู่คนอื่น ๆ
โดยการยึดเกาะ hysteresis มหภาคจุลภาคหรือพื้นผิวที่ขรุขระสร้าง
ฮีและการทำงานร่วมกัน (ผลงานจากแรงเสียดทานยาง
สึกหรอ) [1,2] ในการปรากฏตัวของน้ำมันหล่อลื่นซึ่งเป็นองค์ประกอบที่มีความหนืดของ
แรงเสียดทานก็ยังปรากฏอยู่และสามารถตีความได้ว่าการสูญเสียพลังงานเนื่องจาก
ลักษณะหนืดของน้ำมันหล่อลื่น ผลงานของชิ้นส่วนที่แตกต่างกัน
เพื่อเลื่อนแรงเสียดทานขึ้นอยู่กับรูปทรงเรขาคณิตแมโครรายละเอียดของ
พื้นผิวไมโครภูมิประเทศความเร็ววงญาติความสะอาด
ของพื้นผิวอุณหภูมิวัสดุและคุณสมบัติของพื้นผิวถู
ร่างกายนำไปใช้ในการโหลดปกติวัสดุบรรจุและเนื้อหา
น้ำมันหล่อลื่นและสารเติมแต่งของ และการรักษาพื้นผิว / เคลือบของ
คู่ยากหรือพื้นผิวยาง ปฏิสัมพันธ์ของแรงเสียดทาน
กลไกและความซับซ้อนของกระบวนการทางกายภาพที่เกี่ยวข้องในการ
ลดแรงเสียดทานยาง แต่ให้การทำนายแรงเสียดทานมาก
ท้าทาย.
จากจุดวิศวกรรมของซีลยางลูกสูบมุมมองที่มี
ความสำคัญหลักเพราะพวกเขามักมีการใช้เครื่อง
องค์ประกอบ ระหว่างการดำเนินการมากของพวกเขาเลื่อน ON (ดูเหมือน)
เรียบยาก (เมื่อเทียบกับยาง) countersurface ในการปรากฏตัวของ
น้ำมันหล่อลื่น ซีลมีพื้นผิวเรียบ แต่พื้นผิวของยาก
คู่มักจะได้ราบรื่น (ดู [3]) เพื่อลด
แรงเสียดทานการสึกหรอของยางและสวมใส่การรั่วไหลของการเหนี่ยวนำ มันเป็นที่รู้จักกันดี
ว่าลูกสูบซีลยางใช้งานบ่อยในขอบเขตและ
ผสมระบอบการปกครองหล่อลื่น แต่คำอธิบายที่แตกต่างกันอยู่ใน
วรรณกรรมสำหรับผลงานของแรงเสียดทานที่เกิดขึ้นในเขตแดน
ระบอบการปกครองหล่อลื่น ในมือข้างหนึ่ง [4] ระบุว่าแรงเสียดทานจะถูก
กำหนดโดยส่วนใหญ่มีปฏิสัมพันธ์ระหว่างของแข็งและ
ระหว่างของแข็งและของเหลว คุณสมบัติการไหลที่เป็นกลุ่มของ
การเล่นที่มีสภาพคล่องน้อยหรือไม่มีส่วนร่วมในการลดแรงเสียดทาน ในคำอื่น ๆ แรงเสียดทาน
ผลงานที่เกิดขึ้นในระบอบการปกครองหล่อลื่นเขตแดนเป็นที่ยอมรับว่า
เป็นเพราะการตัดของขอบเขตบางน้ำมันหล่อลื่นชั้น
แยกพื้นผิวการติดต่อหรือตัดของอินเตอร์เฟซ
ระหว่างชั้นขอบเขตและพื้นผิวที่เป็นของแข็ง แรงเฉือน
ของชั้นน้ำมันหล่อลื่นเขตแดนได้รับอิทธิพลจากคุณสมบัติทั้งสองของ
พื้นผิวการติดต่อและของน้ำมันหล่อลื่น ขนาดของมัน
จะถูกกำหนดโดยเฉพาะการทดลองดำเนินการที่เพียงพอ
ต่ำเลื่อนความเร็วที่ผลอุทกพลศาสตร์เป็นเล็กน้อย.
ใน [5] มันก็ชี้ให้เห็นว่าความดันปกติประยุกต์และ
การยึดเกาะที่อาจก่อให้เกิดการแข็ง / ติดต่อของแข็งระหว่างปฏิบัติตาม
น้ำมันหล่อลื่นเขตแดน เกาะ (ต่อเนื่องน้ำมันหล่อลื่นเขตแดน
Layer) ที่ก่อให้เกิดค่าสัมประสิทธิ์ที่ค่อนข้างสูงของแรงเสียดทาน ในขอบเขตของ
ระบอบการปกครองหล่อลื่นที่ใช้โหลดปกติจะดำเนินการโดยความรุนแรง
รายชื่อและสระว่ายน้ำหล่อลื่นปิดที่เกิดขึ้นในหุบเขาความขรุขระ
ของพื้นผิวยาก ในทางตรงกันข้ามใน [6,7] ความสำคัญ
ขององค์ประกอบแรงเสียดทานไมโคร hysteretic จะเน้นในกรณีของ
การหล่อลื่นเขตแดน ผู้เขียนตั้งสมมติฐานว่าแรงเสียดทาน
ผลงานที่เกิดขึ้นในระบอบการปกครองหล่อลื่นเขตแดนเป็นส่วนใหญ่เนื่องจาก
พื้นผิวที่ขรุขระ hysteresis สร้าง (ไมโคร hysteresis).
เหตุผลนี้ได้รับการตั้งสมมติฐานคือการที่บางมาก
บริเวณชั้นที่เกิดขึ้นมักจะมาจากไม่กี่ชั้นของน้ำมันหล่อลื่น
โมเลกุลทำให้ของแข็ง พิมพ์รายชื่อความรุนแรงที่เป็นไปได้ ในทางตรงกันข้าม
ทฤษฎีของสมิ ธ (ดู [1]) กล่าวว่าถ้านิสัยชอบการยึดเกาะที่เป็น
ที่ต่ำมาก (เป็นกรณีนี้เมื่อยึดเกาะขจัดเขตแดน
ชั้นแยกการติดต่อพื้นผิว) ไมโคร hysteretic แรงเสียดทาน
รายการที่มีอยู่ในสารบัญ ScienceDirect
หน้าแรกวารสาร: www.elsevier .com / ค้นหา / triboint
Tribology นานาชาติ
http://dx.doi.org/10.1016/j.triboint.2015.09.018
0301-679X / 2015 และเผยแพร่โดยเอลส์ จำกัด
E-mail address: goda.tibor@gt3.bme .hu
Tribology นานาชาติ 93 (2016) 142-150
จะหายไป ดังนั้นทฤษฎีของสมิ ธ จะขึ้นอยู่กับ "การยึดเกาะที่เกี่ยวข้องกับ
พื้นผิวเปลี่ยนรูปฮี" ที่ลดลง
ผลการยึดเกาะที่เอนเอียงในการลดแรงเสียดทานไมโคร hysteretic.
นอกจากนี้สมิ ธ สันนิษฐานว่าแรงเสียดทานไมโคร hysteretic
ผลงานที่เป็นจริงที่เป็นอิสระจากการติดต่อเล็กน้อย
ความดัน.
วัตถุประสงค์หลักของ การศึกษาในปัจจุบันคือการตรวจสอบผลงาน
ของไมโคร hysteresis แรงเสียดทานยางในกรณีที่เห็นได้ชัดว่า
พื้นผิวเรียบ เพื่อให้บรรลุวัตถุประสงค์นี้มันเป็นสิ่งจำเป็น
ที่จะ reanalyze ผลการวัดของ [6] และเปรียบเทียบ
ผลการทดสอบเพิ่มเติม เช่นเดียวกับใน [6] ผลการทดสอบแรงเสียดทานรายงาน
ยางไนไตรล์ Butadiene (NBR) อยู่ในโฟกัสของงานนี้
เพราะขัดกับความสำคัญในทางปฏิบัติที่ดีน่าแปลกใจที่
ให้ความสนใจน้อยเป็นค่าใช้จ่ายในวรรณคดีน้ำมันหล่อลื่นเลื่อน
แรงเสียดทานของ NBR บีบกับ (เห็นได้ชัด) เหล็กผิวเรียบ
การแปล กรุณารอสักครู่..
 
ภาษาอื่น ๆ
การสนับสนุนเครื่องมือแปลภาษา: กรีก, กันนาดา, กาลิเชียน, คลิงออน, คอร์สิกา, คาซัค, คาตาลัน, คินยารวันดา, คีร์กิซ, คุชราต, จอร์เจีย, จีน, จีนดั้งเดิม, ชวา, ชิเชวา, ซามัว, ซีบัวโน, ซุนดา, ซูลู, ญี่ปุ่น, ดัตช์, ตรวจหาภาษา, ตุรกี, ทมิฬ, ทาจิก, ทาทาร์, นอร์เวย์, บอสเนีย, บัลแกเรีย, บาสก์, ปัญจาป, ฝรั่งเศส, พาชตู, ฟริเชียน, ฟินแลนด์, ฟิลิปปินส์, ภาษาอินโดนีเซี, มองโกเลีย, มัลทีส, มาซีโดเนีย, มาราฐี, มาลากาซี, มาลายาลัม, มาเลย์, ม้ง, ยิดดิช, ยูเครน, รัสเซีย, ละติน, ลักเซมเบิร์ก, ลัตเวีย, ลาว, ลิทัวเนีย, สวาฮิลี, สวีเดน, สิงหล, สินธี, สเปน, สโลวัก, สโลวีเนีย, อังกฤษ, อัมฮาริก, อาร์เซอร์ไบจัน, อาร์เมเนีย, อาหรับ, อิกโบ, อิตาลี, อุยกูร์, อุสเบกิสถาน, อูรดู, ฮังการี, ฮัวซา, ฮาวาย, ฮินดี, ฮีบรู, เกลิกสกอต, เกาหลี, เขมร, เคิร์ด, เช็ก, เซอร์เบียน, เซโซโท, เดนมาร์ก, เตลูกู, เติร์กเมน, เนปาล, เบงกอล, เบลารุส, เปอร์เซีย, เมารี, เมียนมา (พม่า), เยอรมัน, เวลส์, เวียดนาม, เอสเปอแรนโต, เอสโทเนีย, เฮติครีโอล, แอฟริกา, แอลเบเนีย, โคซา, โครเอเชีย, โชนา, โซมาลี, โปรตุเกส, โปแลนด์, โยรูบา, โรมาเนีย, โอเดีย (โอริยา), ไทย, ไอซ์แลนด์, ไอร์แลนด์, การแปลภาษา.

Copyright ©2024 I Love Translation. All reserved.

E-mail: