The main drawbacks of these methods are:
The difficulty acquiring the expertise. The expertise is typically only available after a long period of use of the system (or similar systems). Thus, these methods are unsuitable for safety- or mission-critical systems (such as a nuclear power plant, or a robot operating in space). Moreover, the acquired expert knowledge can never be guaranteed to be complete. In case a previously unseen behaviour occurs, leading to an unexpected observation, it is impossible to give a diagnosis.
The complexity of the learning. The off-line process of building an expert system can require a large amount of time and computer memory.
The size of the final expert system. As the expert system aims to map any observation to a diagnosis, it will in some cases require a huge amount of storage space.
The lack of robustness. If even a small modification is made on the system, the process of constructing the expert system must be repeated.
A slightly different approach is to build an expert system from a model of the system rather than directly from an expertise. An example is the computation of a diagnoser for the diagnosis of discrete event systems. This approach can be seen as model-based, but it benefits from some advantages and suffers some drawbacks of the expert system approach.
The main drawbacks of these methods are:
The difficulty acquiring the expertise. The expertise is typically only available after a long period of use of the system (or similar systems). Thus, these methods are unsuitable for safety- or mission-critical systems (such as a nuclear power plant, or a robot operating in space). Moreover, the acquired expert knowledge can never be guaranteed to be complete. In case a previously unseen behaviour occurs, leading to an unexpected observation, it is impossible to give a diagnosis.
The complexity of the learning. The off-line process of building an expert system can require a large amount of time and computer memory.
The size of the final expert system. As the expert system aims to map any observation to a diagnosis, it will in some cases require a huge amount of storage space.
The lack of robustness. If even a small modification is made on the system, the process of constructing the expert system must be repeated.
A slightly different approach is to build an expert system from a model of the system rather than directly from an expertise. An example is the computation of a diagnoser for the diagnosis of discrete event systems. This approach can be seen as model-based, but it benefits from some advantages and suffers some drawbacks of the expert system approach.
การแปล กรุณารอสักครู่..
