Diabetes mellitus is a metabolic disease characterized by hyperglycemia and disturbances in fat and protein metabolism that results from defects in both insulin secretion and/or insulin action [1]. Various pharmacological approaches have been used to improve diabetes via different modes of action including stimulation of insulin release, inhibition of gluconeogenesis, increasing the number of glucose transporters and reduction of glucose absorption from the intestine [2]. One of the beneficial therapies to impair glucose absorption is through the inhibition of carbohydrate hydrolyzing enzymes such as α-amylase and α-glucosidase in the digestive organs [3,4]. Inhibitors of these enzymes delay carbohydrate digestion and prolong the overall time for carbohydrate digestion, resulting in a decrease in the rate of glucose absorption [5]. Increasing evidence has shown that prolonged exposure to elevated glucose induces the production of free radicals, particularly reactive oxygen species (ROS), through glucose auto-oxidation and protein glycosylation [6]. Oxidative injury by ROS has been suggested to explain the excess prevalence of vascular complications in diabetes mellitus, which may be mediated by oxidative stress [7,8]. An impairment in the equilibrium between ROS and antioxidants results in oxidative stress, a deleterious process that can be an important mediator of damage to cell structures, including lipids and membranes, proteins and DNA. Indeed, a variety of defects in antioxidative status have been reported in experimental and in diabetic patients when compared with normal population