Gravitational Slingshot
Interplanetary space probes often make use of the "gravitational slingshot" effect to propel them to high velocities. For example, Voyager 2 performed a close flyby of Saturn on the 27th of August in 1981, which had the effect of slinging it toward its flyby of Uranus on the 30th of January in 1986. Since gravity is a conservative force, it may seem strange that an object can achieve a net gain in speed due to a close encounter with a large gravitating mass. We might imagine that the speed it gains while approaching the planet would be lost when receding from the planet. However, this is not the case, as we can see from simple consideration of the kinetic energy and momentum, which shows how a planet can transfer kinetic energy to the spacecraft.
An extreme form of the maneuver would be to approach a planet head-on at a speed v while the planet is moving directly toward us at a speed U (both speeds defined relative to the "fixed" Solar frame). If we aim just right we can loop around behind the planet in an extremely eccentric hyperbolic orbit, making a virtual 180-degree turn, as illustrated below.
The net effect is almost as if we "bounced" off the front of the planet. From the planet's perspective we approached at the speed U+v, and therefore we will also recede at the speed U+v relative to the planet, but the planet is still moving at (virtually) the speed U, so we will be moving at speed 2U+v. This is just like a very small billiard ball bouncing off a very large one.
To be a little more precise, conservation of kinetic energy and momentum before and after the interaction requires
where subscripts 1 and 2 denote before and after, respectively. We eliminate U2 and solve for v2 to give the result
Since m/M is virtually zero (the probe has negligible mass compared with the planet), this reduces to our previous estimate of v2 = v1 + 2U1.