Next the tire stifness is increased by a factor of 10. As seen in Figure 10-18, the resulting suspension is seen to provide significantly reduced tire deflections and hence better road holding and cornering performance. However, as seen in Figure 10-16, this is obtained at the cost of increased sprung mass accelerations due to roll-off of the sprung mass acceleration transfer function occuring at a higher frequency. The suspension deflection performance is similarly worsened at high frequencies (Figure 10-17) due to the increase in unsprung mass resonant frequency.
Figure