Engineering design problems are complex by nature because of their critical objective functions involving many variables and Constraints. Engineers have to ensure the compatibility with the imposed specifications keeping the manufacturing costs low. Moreover, the methodology may vary according to the design problem.
The main issue is to choose the proper tool for optimization. In the earlier days, a design problem was optimized by some of the conventional optimization techniques like gradient Search, evolutionary optimization, random search etc. These are known as classical methods.
The method is to be properly Chosen depending on the nature of the problem- an incorrect choice may sometimes fail to give the optimal solution. So the methods are less robust.
Now-a-days soft-computing techniques are being widely used for optimizing a function. These are more robust. Genetic algorithm is one such method. It is an effective tool in the realm of stochastic optimization (non-classical). The algorithm produces many strings and generation to reach the optimal point.
The main objective of the paper is to optimize engineering design problems using Genetic Algorithm and to analyze how the algorithm reaches the optima effectively and closely. We choose a mathematical expression for the objective function in terms of the design variables and optimize the same under given constraints using GA.