volunteered to participate in the training program which consisted of static and dynamic CST sessions, three times per week for six weeks. The repeated measures T-test revealed participants significantly reduced relative vGRF from pre- to post-intervention for the first (3.40 ± 0.78 vs. 2.85 ± 0.52 N·NBW-1, respectively [p<0.05, effect size = 0.60]), and second landing phase (5.09 ± 1.17 vs. 3.02 ± 0.41 N·NBW-1, respectively [p<0.001, effect size = 0.87]). The average loading rate was reduced from pre- to post-intervention during the second landing phase (30.96 ± 18.84 vs. 12.06 ± 9.83 N·NBW·s-1, respectively [p<0.01, effect size = 0.68]). The peak loading rate was reduced from pre- to postintervention during the first (220.26 ± 111.51 vs. 120.27 ± 64.57 N· NBW·s-1 respectively [p<0.01, effect size = 0.64]), and second (99.52 ± 54.98 vs. 44.71 ± 30.34 N· NBW·s-1 respectively [p<0.01, effect size = 0.70]) landing phase. Body weight, average loading rate during the first landing phase, and jump height were not significantly different between week 0 and week 6 (p=0.528, p=0.261, and p=0.877, respectively). This study provides evidence that trunk dominant core stability training improves landing kinetics without improving jump height, and may reduce lower extremity injury risk in female athletes.Keywords: exercise training; drop jump; injury prevention; female athletes; injury risk
การแปล กรุณารอสักครู่..
