FORCES IN DERRICK RIGS The geometry of the derrick rig will to a large extent influence the loads carried by the rig components. Those dimensions which have the greatest influence are the length of boom, the distance between the boom heel and the masthead span connection (height of suspension), and the angle at which the boom is topped. When the ratio between boom length and height of suspension is increased the boom thrust will be higher; therefore should a long boom be required the height of suspension must be adequate. It is not unusual however for shipowners to object to having posts at the bridge front and if the height of suspension is then restricted there is some limitation on the boom length, which can make working cargo from that position difficult. The angle at which the derrick is topped has no effect on the axial thrust, but the lead from the cargo purchase often increases the thrust as it is led parallel to the boom on all except heavy lift derricks. Loads carried by the span are dependent on both the ratio of boom length to height of suspension and the angle at which the derrick is topped. The span load is greater at a lower angle to the horizontal, and increases with longer booms for a given suspension height. To determine these forces simple space and force diagrams may be drawn and the resultant forces determined to give the required wire sizes, block and connection safe working loads, and the thrust experienced by the boom. The horizontal and vertical components of the span load and boom thrust are also used to determine the mast scantlings. Force diagrams are shown for the rig components of the single swinging derrick illustrated in Figure 24.4. For a safe working load of 15 tonnes or less the forces may be calculated with the derrick at angles of 30° and 70° to the horizontal unless the owner specifies that the derrick is to be used at a lower angle (not less than 15°).
At safe working loads greater than 15 tonnes the forces may be calculated