Our spectrophotometry data further support the above findings on hepatic G6PD levels and demonstrate an approximately 1.63 × and 1.66 × fold increase in day-7 and day-14 NDEA intoxicated animals (P < 0.05). It is concluded that elevation in the G6PD activity is apparently the consequence of NDEA-induced intoxication or oxidative stress, leading to hepatic damage to provide sufficient NADPH for microsomal detoxification and ribose-5-phosphate for DNA synthesis and repair, respectively, to maintain the cellular redox status.